The Resource Advances in Unconventional Computing : Volume 1: Theory, edited by Andrew Adamatzky, (electronic resource)

Advances in Unconventional Computing : Volume 1: Theory, edited by Andrew Adamatzky, (electronic resource)

Label
Advances in Unconventional Computing : Volume 1: Theory
Title
Advances in Unconventional Computing
Title remainder
Volume 1: Theory
Statement of responsibility
edited by Andrew Adamatzky
Contributor
Editor
Provider
Subject
Language
eng
Summary
The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; infinity and spatial computation; chemical and reservoir computing. The book is the encyclopedia, the first ever complete authoritative account, of the theoretical and experimental findings in the unconventional computing written by the world leaders in the field. All chapters are self-contains, no specialist background is required to appreciate ideas, findings, constructs and designs presented. This treatise in unconventional computing appeals to readers from all walks of life, from high-school pupils to university professors, from mathematicians, computers scientists and engineers to chemists and biologists
Member of
Image bit depth
0
LC call number
Q342
Literary form
non fiction
http://library.link/vocab/relatedWorkOrContributorName
  • Adamatzky, Andrew.
  • SpringerLink
Series statement
Emergence, Complexity and Computation,
Series volume
22
http://library.link/vocab/subjectName
  • Engineering
  • Artificial intelligence
  • Computational intelligence
  • Complexity, Computational
  • Engineering
  • Computational Intelligence
  • Complexity
  • Artificial Intelligence (incl. Robotics)
Label
Advances in Unconventional Computing : Volume 1: Theory, edited by Andrew Adamatzky, (electronic resource)
Instantiates
Publication
Antecedent source
mixed
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
not applicable
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Nonuniversality in Computation: Fifteen Misconceptions Rectified -- What Is Computable? What Is Feasibly Computable? A Physicist’s Viewpoint -- The Ideal Energy of Classical Lattice Dynamics -- An Analogue-digital Model of Computation: Turing Machines with Physical Oracles -- Physical and Formal Aspects of Computation: Exploiting Physics for Computation and Exploiting Computation for Physical Purposes -- Computing in Perfect Euclidean Framework.-Unconventional Computers and Unconventional Complexity Measures -- Decreasing Complexity in Inductive Computations.-Asymptotic Intrinsic Universality and Natural Reprogrammability by Behavioural Emulation -- Two Small Universal Reversible Turing Machines -- Percolation Transition and Related Phenomena in Terms of Grossone Infinity Computations -- Spacetime Computing: Towards Algorithmic Causal Sets with Special-Relativistic Properties -- Interaction-based Programming in MGS -- Cellular Automata in Hyperbolic Spaces -- A Computation in a Cellular Automaton Collider Rule 110 -- Quantum Queries Associated with Equi-Partitioning of States and Multipartite Relational Encoding Across Space-Time -- Solving the Broadcast Time Problem Using a D-Wave Quantum Computer -- The Group Zoo of Classical Reversible Computing and Quantum Computing -- Fault Models in Reversible and Quantum Circuits -- A Class of Non-optimum-time 3n-Step FSSP Algorithms -- Universality of Asynchronous Circuits Composed of Locally Reversible Elements -- Reservoir Computing as a Model for In-Materio Computing -- On Reservoir Computing: from Mathematical Foundations to Unconventional Applications -- Computational Properties of Cell Regulatory Pathways through Petri Nets -- Kernel P Systems and Stochastic P Systems for Modelling and Formal Verification of Genetic Logic Gates -- On Improving the Expressive Power of Chemical Computation -- Conventional and Unconventional Approaches to Swarm Logic -- On the Inverse Pattern Recognition Problem in the Context of the Time-Series Data Processing withMemristor Networks -- Self-Awareness in Digital Systems: Augmenting Self-Modification with Introspection to Create Adaptive, Responsive Circuitry -- Looking for Computers in the Biological Cell. After Twenty Years -- Unconventional Computing: A Brief Subjective History
Dimensions
unknown
Extent
IX, 874 p. 367 illus., 209 illus. in color.
File format
multiple file formats
Form of item
electronic
Isbn
9783319339245
Level of compression
uncompressed
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other control number
10.1007/978-3-319-33924-5
Other physical details
online resource.
Quality assurance targets
absent
Reformatting quality
access
Specific material designation
remote
System control number
(DE-He213)978-3-319-33924-5
Label
Advances in Unconventional Computing : Volume 1: Theory, edited by Andrew Adamatzky, (electronic resource)
Publication
Antecedent source
mixed
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
not applicable
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
Nonuniversality in Computation: Fifteen Misconceptions Rectified -- What Is Computable? What Is Feasibly Computable? A Physicist’s Viewpoint -- The Ideal Energy of Classical Lattice Dynamics -- An Analogue-digital Model of Computation: Turing Machines with Physical Oracles -- Physical and Formal Aspects of Computation: Exploiting Physics for Computation and Exploiting Computation for Physical Purposes -- Computing in Perfect Euclidean Framework.-Unconventional Computers and Unconventional Complexity Measures -- Decreasing Complexity in Inductive Computations.-Asymptotic Intrinsic Universality and Natural Reprogrammability by Behavioural Emulation -- Two Small Universal Reversible Turing Machines -- Percolation Transition and Related Phenomena in Terms of Grossone Infinity Computations -- Spacetime Computing: Towards Algorithmic Causal Sets with Special-Relativistic Properties -- Interaction-based Programming in MGS -- Cellular Automata in Hyperbolic Spaces -- A Computation in a Cellular Automaton Collider Rule 110 -- Quantum Queries Associated with Equi-Partitioning of States and Multipartite Relational Encoding Across Space-Time -- Solving the Broadcast Time Problem Using a D-Wave Quantum Computer -- The Group Zoo of Classical Reversible Computing and Quantum Computing -- Fault Models in Reversible and Quantum Circuits -- A Class of Non-optimum-time 3n-Step FSSP Algorithms -- Universality of Asynchronous Circuits Composed of Locally Reversible Elements -- Reservoir Computing as a Model for In-Materio Computing -- On Reservoir Computing: from Mathematical Foundations to Unconventional Applications -- Computational Properties of Cell Regulatory Pathways through Petri Nets -- Kernel P Systems and Stochastic P Systems for Modelling and Formal Verification of Genetic Logic Gates -- On Improving the Expressive Power of Chemical Computation -- Conventional and Unconventional Approaches to Swarm Logic -- On the Inverse Pattern Recognition Problem in the Context of the Time-Series Data Processing withMemristor Networks -- Self-Awareness in Digital Systems: Augmenting Self-Modification with Introspection to Create Adaptive, Responsive Circuitry -- Looking for Computers in the Biological Cell. After Twenty Years -- Unconventional Computing: A Brief Subjective History
Dimensions
unknown
Extent
IX, 874 p. 367 illus., 209 illus. in color.
File format
multiple file formats
Form of item
electronic
Isbn
9783319339245
Level of compression
uncompressed
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other control number
10.1007/978-3-319-33924-5
Other physical details
online resource.
Quality assurance targets
absent
Reformatting quality
access
Specific material designation
remote
System control number
(DE-He213)978-3-319-33924-5

Library Locations

  • African Studies LibraryBorrow it
    771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Alumni Medical LibraryBorrow it
    72 East Concord Street, Boston, MA, 02118, US
    42.336388 -71.072393
  • Astronomy LibraryBorrow it
    725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US
    42.350259 -71.105717
  • Fineman and Pappas Law LibrariesBorrow it
    765 Commonwealth Avenue, Boston, MA, 02215, US
    42.350979 -71.107023
  • Frederick S. Pardee Management LibraryBorrow it
    595 Commonwealth Avenue, Boston, MA, 02215, US
    42.349626 -71.099547
  • Howard Gotlieb Archival Research CenterBorrow it
    771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Mugar Memorial LibraryBorrow it
    771 Commonwealth Avenue, Boston, MA, 02215, US
    42.350723 -71.108227
  • Music LibraryBorrow it
    771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Pikering Educational Resources LibraryBorrow it
    2 Silber Way, Boston, MA, 02215, US
    42.349804 -71.101425
  • School of Theology LibraryBorrow it
    745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350494 -71.107235
  • Science & Engineering LibraryBorrow it
    38 Cummington Mall, Boston, MA, 02215, US
    42.348472 -71.102257
  • Stone Science LibraryBorrow it
    675 Commonwealth Avenue, Boston, MA, 02445, US
    42.350103 -71.103784
Processing Feedback ...