The Resource Advances in atomic, molecular, and optical physics, Volume 62, edited by E. Arimondo, P. R. Berman, C. C. Lin, (electronic resource )

Advances in atomic, molecular, and optical physics, Volume 62, edited by E. Arimondo, P. R. Berman, C. C. Lin, (electronic resource )

Label
Advances in atomic, molecular, and optical physics, Volume 62
Title
Advances in atomic, molecular, and optical physics
Title number
Volume 62
Statement of responsibility
edited by E. Arimondo, P. R. Berman, C. C. Lin
Contributor
Subject
Genre
Language
  • eng
  • eng
Summary
Advances in Atomic, Molecular, and Optical Physics publishes reviews of recent developments in a field that is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered include related applied areas, such as atmospheric science, astrophysics, surface physics and laser physics. Articles are written by distinguished experts and contain relevant review material and detailed descriptions of important recent developments. International experts Comprehensive articles New developments
Is Subseries of
Cataloging source
MiAaPQ
Dewey number
539
Illustrations
illustrations
Index
index present
Language note
English
LC call number
QC173
LC item number
.A38 2013
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Arimondo, E
  • Berman, P. R
  • Lin, C. C
http://library.link/vocab/subjectName
  • Nuclear physics
  • Atoms
  • Molecules
  • Physical optics
Label
Advances in atomic, molecular, and optical physics, Volume 62, edited by E. Arimondo, P. R. Berman, C. C. Lin, (electronic resource )
Instantiates
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references at the end of each chapters and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
  • Half Title; Editors; Title Page; Copyright; Contents; Contributors; Preface; 1 Ultracold Few-Body Systems; 1 Introduction; 2 Interactions in Ultracold Gases; 2.1 External Field Control of Interatomic Interactions; 2.2 Interaction Models; 2.2.1 The Zero-Range Model; 2.2.2 Single and Multichannel Models; 3 Efimov Physics in Ultracold Quantum Gases; 3.1 Methods to Explore Three-Body Systems; 3.1.1 Hyperspherical Coordinates; 3.1.2 Other Methods for Solving the Few-Body Schrödinger Equation; 3.1.3 Analytically Extracting Ultracold Inelastic Rates; 3.2 The Efimov Effect vs Efimov Physics
  • 3.2.1 Conditions for the Efimov Effect3.2.2 Ultracold Three-Body Scattering Rates; 3.3 Experimental Observations in Ultracold Gases; 4 Beyond the Efimov Scenario; 4.1 Efimov Effect at Finite Scattering Energies; 4.1.1 Energy-Dependent Efimov Features When a>0; 4.1.2 Energy-Dependent Efimov Features When a<0; 4.1.3 Observing Finite Energy Efimov Features via BEC Collisions; 4.2 Finite-Range Effects; 4.3 Efimov Physics for Narrow Feshbach Resonances; 4.3.1 Three Identical Bosons BBB; 4.3.2 Two-Component Fermion Systems FFF'; 4.4 Efimov Physics Beyond Three-Body Systems
  • 4.4.1 Universal Four-Body States for Identical Bosons4.4.2 Four-Body Efimov Physics for BBBL Systems; 4.4.3 Four-Body ``Efimov Effect'' in FFFL Systems; 4.4.4 Not Too Few, But Not So Many; 4.5 Forms of Interactions Beyond Efimov; 4.5.1 Three-Body States with -1/r Two-Body Interactions; 4.5.2 Three-Body States with -1/r2 Two-Body Interactions; 5 Other Three-Body Systems Relevant for Cold Atom Physics; 5.1 Three Helium Atoms; 5.2 Three-Body Systems with Alkali-Metal and Helium or Hydrogen Atoms; 6 Outlook; Acknowledgments; References; 2 Shortcuts to Adiabaticity; 1 Introduction
  • 2 General Formalisms2.1 Invariant-Based Inverse Engineering; 2.2 Counterdiabatic or Transitionless Tracking Approach; 2.3 Fast-Forward Approach; 2.4 Alternative Shortcuts Through Unitary Transformations; 2.5 Optimal Control Theory; 3 Expansions of Trapped Particles; 3.1 Transient Energy Excitation; 3.2 Three-Dimensional Effects; 3.3 Bose-Einstein Condensates; 3.4 Strongly Correlated Gases; 3.5 Experimental Realization; 3.6 Optimal Control; 3.7 Other Applications; 4 Transport; 4.1 Invariant-Based Shortcuts for Transport; 4.2 Transport of a Bose-Einstein Condensate; 5 Internal State Engineering
  • 5.1 Population Inversion in Two-Level Systems5.2 Effect of Noise and Perturbations; 5.3 Three-Level Systems; 5.4 Spintronics; 5.5 Experiments; 6 Wavepacket Splitting; 7 Discussion; Acknowledgments; References; 3 Excitons and Cavity Polaritons for Optical Lattice Ultracold Atoms; 1 Introduction; 2 Ultracold Atoms in an Optical Lattice as Artificial Crystals; 2.1 Superfluid to Mott-Insulator Transitions; 2.2 Mott Insulator for a Two-Component Bose-Hubbard Model; 3 Excitons in Optical Lattices; 3.1 Resonance Dipole-Dipole Interactions; 3.2 One-Dimensional Atomic Chains
  • 3.3 Two-Dimensional Planar Optical Lattices
Dimensions
unknown
Extent
1 online resource (421 p.)
Form of item
online
Isbn
9780124081109
Media category
computer
Media type code
c
Specific material designation
remote
System control number
  • (EBL)1332183
  • (OCoLC)858762355
  • (SSID)ssj0001152105
  • (PQKBManifestationID)11654157
  • (PQKBTitleCode)TC0001152105
  • (PQKBWorkID)11145194
  • (PQKB)10733260
  • (MiAaPQ)EBC1332183
  • (EXLCZ)992550000001106378
Label
Advances in atomic, molecular, and optical physics, Volume 62, edited by E. Arimondo, P. R. Berman, C. C. Lin, (electronic resource )
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references at the end of each chapters and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
  • Half Title; Editors; Title Page; Copyright; Contents; Contributors; Preface; 1 Ultracold Few-Body Systems; 1 Introduction; 2 Interactions in Ultracold Gases; 2.1 External Field Control of Interatomic Interactions; 2.2 Interaction Models; 2.2.1 The Zero-Range Model; 2.2.2 Single and Multichannel Models; 3 Efimov Physics in Ultracold Quantum Gases; 3.1 Methods to Explore Three-Body Systems; 3.1.1 Hyperspherical Coordinates; 3.1.2 Other Methods for Solving the Few-Body Schrödinger Equation; 3.1.3 Analytically Extracting Ultracold Inelastic Rates; 3.2 The Efimov Effect vs Efimov Physics
  • 3.2.1 Conditions for the Efimov Effect3.2.2 Ultracold Three-Body Scattering Rates; 3.3 Experimental Observations in Ultracold Gases; 4 Beyond the Efimov Scenario; 4.1 Efimov Effect at Finite Scattering Energies; 4.1.1 Energy-Dependent Efimov Features When a>0; 4.1.2 Energy-Dependent Efimov Features When a<0; 4.1.3 Observing Finite Energy Efimov Features via BEC Collisions; 4.2 Finite-Range Effects; 4.3 Efimov Physics for Narrow Feshbach Resonances; 4.3.1 Three Identical Bosons BBB; 4.3.2 Two-Component Fermion Systems FFF'; 4.4 Efimov Physics Beyond Three-Body Systems
  • 4.4.1 Universal Four-Body States for Identical Bosons4.4.2 Four-Body Efimov Physics for BBBL Systems; 4.4.3 Four-Body ``Efimov Effect'' in FFFL Systems; 4.4.4 Not Too Few, But Not So Many; 4.5 Forms of Interactions Beyond Efimov; 4.5.1 Three-Body States with -1/r Two-Body Interactions; 4.5.2 Three-Body States with -1/r2 Two-Body Interactions; 5 Other Three-Body Systems Relevant for Cold Atom Physics; 5.1 Three Helium Atoms; 5.2 Three-Body Systems with Alkali-Metal and Helium or Hydrogen Atoms; 6 Outlook; Acknowledgments; References; 2 Shortcuts to Adiabaticity; 1 Introduction
  • 2 General Formalisms2.1 Invariant-Based Inverse Engineering; 2.2 Counterdiabatic or Transitionless Tracking Approach; 2.3 Fast-Forward Approach; 2.4 Alternative Shortcuts Through Unitary Transformations; 2.5 Optimal Control Theory; 3 Expansions of Trapped Particles; 3.1 Transient Energy Excitation; 3.2 Three-Dimensional Effects; 3.3 Bose-Einstein Condensates; 3.4 Strongly Correlated Gases; 3.5 Experimental Realization; 3.6 Optimal Control; 3.7 Other Applications; 4 Transport; 4.1 Invariant-Based Shortcuts for Transport; 4.2 Transport of a Bose-Einstein Condensate; 5 Internal State Engineering
  • 5.1 Population Inversion in Two-Level Systems5.2 Effect of Noise and Perturbations; 5.3 Three-Level Systems; 5.4 Spintronics; 5.5 Experiments; 6 Wavepacket Splitting; 7 Discussion; Acknowledgments; References; 3 Excitons and Cavity Polaritons for Optical Lattice Ultracold Atoms; 1 Introduction; 2 Ultracold Atoms in an Optical Lattice as Artificial Crystals; 2.1 Superfluid to Mott-Insulator Transitions; 2.2 Mott Insulator for a Two-Component Bose-Hubbard Model; 3 Excitons in Optical Lattices; 3.1 Resonance Dipole-Dipole Interactions; 3.2 One-Dimensional Atomic Chains
  • 3.3 Two-Dimensional Planar Optical Lattices
Dimensions
unknown
Extent
1 online resource (421 p.)
Form of item
online
Isbn
9780124081109
Media category
computer
Media type code
c
Specific material designation
remote
System control number
  • (EBL)1332183
  • (OCoLC)858762355
  • (SSID)ssj0001152105
  • (PQKBManifestationID)11654157
  • (PQKBTitleCode)TC0001152105
  • (PQKBWorkID)11145194
  • (PQKB)10733260
  • (MiAaPQ)EBC1332183
  • (EXLCZ)992550000001106378

Library Locations

  • African Studies LibraryBorrow it
    771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Alumni Medical LibraryBorrow it
    72 East Concord Street, Boston, MA, 02118, US
    42.336388 -71.072393
  • Astronomy LibraryBorrow it
    725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US
    42.350259 -71.105717
  • Fineman and Pappas Law LibrariesBorrow it
    765 Commonwealth Avenue, Boston, MA, 02215, US
    42.350979 -71.107023
  • Frederick S. Pardee Management LibraryBorrow it
    595 Commonwealth Avenue, Boston, MA, 02215, US
    42.349626 -71.099547
  • Howard Gotlieb Archival Research CenterBorrow it
    771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Mugar Memorial LibraryBorrow it
    771 Commonwealth Avenue, Boston, MA, 02215, US
    42.350723 -71.108227
  • Music LibraryBorrow it
    771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Pikering Educational Resources LibraryBorrow it
    2 Silber Way, Boston, MA, 02215, US
    42.349804 -71.101425
  • School of Theology LibraryBorrow it
    745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350494 -71.107235
  • Science & Engineering LibraryBorrow it
    38 Cummington Mall, Boston, MA, 02215, US
    42.348472 -71.102257
  • Stone Science LibraryBorrow it
    675 Commonwealth Avenue, Boston, MA, 02445, US
    42.350103 -71.103784
Processing Feedback ...