Borrow it
- African Studies Library
- Alumni Medical Library
- Astronomy Library
- Fineman and Pappas Law Libraries
- Frederick S. Pardee Management Library
- Howard Gotlieb Archival Research Center
- Mugar Memorial Library
- Music Library
- Pikering Educational Resources Library
- School of Theology Library
- Science & Engineering Library
- Stone Science Library
The Resource Classical microlocal analysis in the space of hyperfunctions, Seiichiro Wakabayashi
Classical microlocal analysis in the space of hyperfunctions, Seiichiro Wakabayashi
Resource Information
The item Classical microlocal analysis in the space of hyperfunctions, Seiichiro Wakabayashi represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Boston University Libraries.This item is available to borrow from all library branches.
Resource Information
The item Classical microlocal analysis in the space of hyperfunctions, Seiichiro Wakabayashi represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Boston University Libraries.
This item is available to borrow from all library branches.
- Language
- eng
- Extent
- viii, 367 pages
- Contents
-
- 1. Hyperfunctions
- 1.1. Function spaces
- 1.2. Supports
- 1.3. Localization
- 1.4. Hyperfunctions
- 1.5. Further applications of the Runge approximation theorem
- 2. Basic calculus of Fourier integral operators and pseudo-differential operators
- 2.1. Preliminary lemmas
- 2.2. Symbol classes
- 2.3. Definition of Fourier integral operators
- 2.4. Product formula of Fourier integral operators I
- 2.5. Product formula of Fourier integral operators II
- 2.6. Pseudolocal properties
- 2.7. Pseudodifferential operators in B
- 2.8. Parametrices of elliptic operators
- 3. Analytic wave front sets and microfunctions
- 3.1. Analytic wave front sets
- 3.2. Action of Fourier integral operators on wave front sets
- 3.3. The boundary values of analytic functions
- 3.4. Operations on hyperfunctions
- 3.5. Hyperfunctions supported by a half-space
- 3.6. Microfunctions
- 3.7. Formal analytic symbols
- 4. Microlocal uniqueness
- 4.1. Preliminary lemmas
- 4.2. General results
- 4.3. Microhyperbolic operators
- 4.4. Canonical transformation
- 4.5. Hypoellipticity
- 5. Local solvability
- 5.1. Preliminaries
- 5.2. Necessary conditions on local solvability and hypoellipticity
- 5.3. Sufficient conditions on local solvability
- 5.4. Some examples
- A. Proofs of product formulae
- B. A priori estimates
- Isbn
- 9783540676034
- Label
- Classical microlocal analysis in the space of hyperfunctions
- Title
- Classical microlocal analysis in the space of hyperfunctions
- Statement of responsibility
- Seiichiro Wakabayashi
- Language
- eng
- Cataloging source
- DLC
- http://library.link/vocab/creatorDate
- 1948-
- http://library.link/vocab/creatorName
- Wakabayashi, Seiichiro
- Index
- index present
- LC call number
- QA3.L28 no. 1737
- Literary form
- non fiction
- Nature of contents
- bibliography
- Series statement
- Lecture notes in mathematics,
- Series volume
- 1737
- http://library.link/vocab/subjectName
-
- Hyperfunctions
- Microlocal analysis
- Hyperfonctions
- Analyse microlocale
- Hyperfunctions
- Microlocal analysis
- Lokale analyse (wiskunde)
- Equacoes diferenciais parciais
- Hyperfonctions
- Analyse microlocale
- Partielle Differentialgleichung
- Mikrolokale Analysis
- Hyperfunktion
- Label
- Classical microlocal analysis in the space of hyperfunctions, Seiichiro Wakabayashi
- Bibliography note
- Includes bibliographical references (p. [361]-364) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- 1. Hyperfunctions -- 1.1. Function spaces -- 1.2. Supports -- 1.3. Localization -- 1.4. Hyperfunctions -- 1.5. Further applications of the Runge approximation theorem -- 2. Basic calculus of Fourier integral operators and pseudo-differential operators -- 2.1. Preliminary lemmas -- 2.2. Symbol classes -- 2.3. Definition of Fourier integral operators -- 2.4. Product formula of Fourier integral operators I -- 2.5. Product formula of Fourier integral operators II -- 2.6. Pseudolocal properties -- 2.7. Pseudodifferential operators in B -- 2.8. Parametrices of elliptic operators -- 3. Analytic wave front sets and microfunctions -- 3.1. Analytic wave front sets -- 3.2. Action of Fourier integral operators on wave front sets -- 3.3. The boundary values of analytic functions -- 3.4. Operations on hyperfunctions -- 3.5. Hyperfunctions supported by a half-space -- 3.6. Microfunctions -- 3.7. Formal analytic symbols -- 4. Microlocal uniqueness -- 4.1. Preliminary lemmas -- 4.2. General results -- 4.3. Microhyperbolic operators -- 4.4. Canonical transformation -- 4.5. Hypoellipticity -- 5. Local solvability -- 5.1. Preliminaries -- 5.2. Necessary conditions on local solvability and hypoellipticity -- 5.3. Sufficient conditions on local solvability -- 5.4. Some examples -- A. Proofs of product formulae -- B. A priori estimates
- Dimensions
- 24 cm.
- Extent
- viii, 367 pages
- Isbn
- 9783540676034
- Lccn
- 00040014
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- System control number
-
- (OCoLC)44046959
- (OCoLC)ocm44046959
- Label
- Classical microlocal analysis in the space of hyperfunctions, Seiichiro Wakabayashi
- Bibliography note
- Includes bibliographical references (p. [361]-364) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- 1. Hyperfunctions -- 1.1. Function spaces -- 1.2. Supports -- 1.3. Localization -- 1.4. Hyperfunctions -- 1.5. Further applications of the Runge approximation theorem -- 2. Basic calculus of Fourier integral operators and pseudo-differential operators -- 2.1. Preliminary lemmas -- 2.2. Symbol classes -- 2.3. Definition of Fourier integral operators -- 2.4. Product formula of Fourier integral operators I -- 2.5. Product formula of Fourier integral operators II -- 2.6. Pseudolocal properties -- 2.7. Pseudodifferential operators in B -- 2.8. Parametrices of elliptic operators -- 3. Analytic wave front sets and microfunctions -- 3.1. Analytic wave front sets -- 3.2. Action of Fourier integral operators on wave front sets -- 3.3. The boundary values of analytic functions -- 3.4. Operations on hyperfunctions -- 3.5. Hyperfunctions supported by a half-space -- 3.6. Microfunctions -- 3.7. Formal analytic symbols -- 4. Microlocal uniqueness -- 4.1. Preliminary lemmas -- 4.2. General results -- 4.3. Microhyperbolic operators -- 4.4. Canonical transformation -- 4.5. Hypoellipticity -- 5. Local solvability -- 5.1. Preliminaries -- 5.2. Necessary conditions on local solvability and hypoellipticity -- 5.3. Sufficient conditions on local solvability -- 5.4. Some examples -- A. Proofs of product formulae -- B. A priori estimates
- Dimensions
- 24 cm.
- Extent
- viii, 367 pages
- Isbn
- 9783540676034
- Lccn
- 00040014
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- System control number
-
- (OCoLC)44046959
- (OCoLC)ocm44046959
Library Locations
-
African Studies LibraryBorrow it771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US42.350723 -71.108227
-
-
Astronomy LibraryBorrow it725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US42.350259 -71.105717
-
Fineman and Pappas Law LibrariesBorrow it765 Commonwealth Avenue, Boston, MA, 02215, US42.350979 -71.107023
-
Frederick S. Pardee Management LibraryBorrow it595 Commonwealth Avenue, Boston, MA, 02215, US42.349626 -71.099547
-
Howard Gotlieb Archival Research CenterBorrow it771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US42.350723 -71.108227
-
-
Music LibraryBorrow it771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US42.350723 -71.108227
-
Pikering Educational Resources LibraryBorrow it2 Silber Way, Boston, MA, 02215, US42.349804 -71.101425
-
School of Theology LibraryBorrow it745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US42.350494 -71.107235
-
Science & Engineering LibraryBorrow it38 Cummington Mall, Boston, MA, 02215, US42.348472 -71.102257
-
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/portal/Classical-microlocal-analysis-in-the-space-of/crClaHn_R_E/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/portal/Classical-microlocal-analysis-in-the-space-of/crClaHn_R_E/">Classical microlocal analysis in the space of hyperfunctions, Seiichiro Wakabayashi</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Classical microlocal analysis in the space of hyperfunctions, Seiichiro Wakabayashi
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/portal/Classical-microlocal-analysis-in-the-space-of/crClaHn_R_E/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/portal/Classical-microlocal-analysis-in-the-space-of/crClaHn_R_E/">Classical microlocal analysis in the space of hyperfunctions, Seiichiro Wakabayashi</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>