The Resource Cosmic plasma physics, by Boris V. Somov

Cosmic plasma physics, by Boris V. Somov

Label
Cosmic plasma physics
Title
Cosmic plasma physics
Statement of responsibility
by Boris V. Somov
Creator
Subject
Language
eng
Member of
Cataloging source
DLC
http://library.link/vocab/creatorName
Somov, B. V.
Illustrations
illustrations
Index
index present
LC call number
QC809.P5
LC item number
S655 2000
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/subjectName
  • Space plasmas
  • Plasma
  • Astrophysique
  • Plasmas cosmiques
  • Space plasmas
  • Astrofysica
  • Plasmafysica
  • Física de plasmas
  • Astrofísica
  • Cosmologia
  • Plasmas cosmiques
Label
Cosmic plasma physics, by Boris V. Somov
Instantiates
Publication
Bibliography note
Includes bibliographical references (p. 607-638) and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 5
  • 46
  • 2.6
  • Comments on numerical simulations
  • 47
  • 3
  • Propagation of Accelerated Particles in Cosmic Plasma
  • 51
  • 3.1
  • Derivation of the basic equation
  • 51
  • 1.1.2
  • 3.1.1
  • Basic approximations
  • 51
  • 3.1.2
  • Dimensionless equation
  • 53
  • 3.2
  • A kinetic equation at high speeds
  • 55
  • 3.3
  • Continuity equation for electric charge
  • Classical thick-target model
  • 57
  • 3.4
  • An approximate account of scattering
  • 60
  • 3.5
  • Reverse-current electric-field effect
  • 64
  • 3.5.1
  • Necessity for a beam-neutralizing current
  • 6
  • 64
  • 3.5.2
  • A formulation of a realistic kinetic problem
  • 66
  • 3.5.3
  • Dimensionless parameters of the problem
  • 68
  • 3.5.4
  • Coulomb energy losses
  • 70
  • 1.1.3
  • 3.5.5
  • Basic physical results
  • 72
  • 4
  • Motion of a Particle in Given Fields
  • 75
  • 4.1
  • A particle in constant homogeneous fields
  • 75
  • 4.1.1
  • Initial equations and initial conditions
  • Constant non-magnetic forces
  • 76
  • 4.1.2
  • Constant homogeneous magnetic fields
  • 76
  • 4.1.3
  • Non-magnetic forces in a homogeneous magnetic field
  • 79
  • 4.2
  • Weakly inhomogeneous slowly changing fields
  • 7
  • 81
  • 4.2.1
  • Small parameters in the motion equation
  • 81
  • 4.2.2
  • Expansion in powers of m/e
  • 83
  • 4.2.3
  • Averaging over gyro-motion
  • 85
  • 1.1.4
  • 4.2.4
  • Spiral motion of the guiding center
  • 87
  • 4.2.5
  • Inertial and gradient drifts
  • 88
  • 4.3
  • Adiabatic invariants in cosmic plasmas
  • 92
  • 4.3.1
  • Cosmic plasma applications
  • General definitions
  • 92
  • 4.3.2
  • Three main invariants
  • 92
  • 4.3.3
  • Approximation accuracy. Exact solutions
  • 101
  • 4.4
  • What is magnetic reconnection?
  • 8
  • 101
  • 4.4.1
  • Neutral points of a magnetic field
  • 101
  • 4.4.2
  • Reconnection in vacuum
  • 103
  • 4.4.3
  • Reconnection in plasma
  • 105
  • 1
  • 1.1.5
  • 4.4.4
  • Three stages in the reconnection process
  • 107
  • 4.5
  • Acceleration in current sheets, why?
  • 108
  • 4.5.1
  • Origin of particle acceleration
  • 108
  • 4.5.2
  • Gravitational systems
  • Acceleration in a neutral current sheet
  • 109
  • 5
  • Wave-Particle Interactions in Cosmic Plasma
  • 117
  • 5.1
  • Basis of kinetic theory
  • 117
  • 5.1.1
  • Linearized Vlasov equation
  • 9
  • 117
  • 5.1.2
  • Landau resonance and Landau damping
  • 119
  • 5.1.3
  • Gyroresonance
  • 121
  • 5.2
  • Stochastic acceleration of particles by waves
  • 123
  • 1.2
  • 5.2.1
  • Principles of particle acceleration by waves
  • 123
  • 5.2.2
  • MHD turbulent cascading
  • 125
  • 5.2.3
  • Stochastic acceleration of electrons
  • 127
  • 5.2.4
  • Liouville's theorem
  • Acceleration of protons and heavy ions
  • 128
  • 5.2.5
  • Electron-dominated solar flares
  • 130
  • 5.3
  • Relativistic electron-positron plasma
  • 133
  • 5.4
  • Practice: Problems and Answers
  • 10
  • 134
  • 6
  • Coulomb Collisions of Particles in Cosmic Plasma
  • 137
  • 6.1
  • Close and distant collisions
  • 137
  • 6.1.1
  • Rutherford formula and collision parameters
  • 137
  • 1.2.1
  • 6.1.2
  • Test particle concept
  • 139
  • 6.1.3
  • Particles in a magnetic trap
  • 140
  • 6.1.4
  • Role of distant collisions
  • 141
  • 6.2
  • Continuity in phase space
  • Debye shielding and plasma oscillations
  • 143
  • 6.3
  • Collisional relaxations in cosmic plasma
  • 146
  • 6.3.1
  • Some exact solutions
  • 146
  • 6.3.2
  • Two-temperature plasma in solar flares
  • 10
  • 148
  • 6.3.3
  • An adiabatic model for two-temperature plasma
  • 153
  • 6.3.4
  • Two-temperature accretion flows
  • 154
  • 6.4
  • Dynamic friction in cosmic plasma
  • 155
  • 1.2.2
  • 6.4.1
  • Collisional drag force and energy losses
  • 155
  • 6.4.2
  • Electric runaway
  • 160
  • 6.4.3
  • Thermal runaway in cosmic plasma
  • 162
  • 7
  • Particles and Fields: Exact Self-Consistent Description
  • Character of particle interactions
  • A Hydrodynamic Description of Cosmic Plasma
  • 167
  • 7.1
  • Transition to macroscopic transfer equations
  • 167
  • 7.1.1
  • Distribution function moments
  • 168
  • 7.1.2
  • Equations for moments
  • 12
  • 169
  • 7.1.3
  • General properties of the transfer equations
  • 174
  • 7.2
  • Hydrodynamic equations for cosmic plasma
  • 175
  • 7.2.1
  • Continuity equation
  • 175
  • 1.2.3
  • 7.2.2
  • Momentum conservation law in cosmic plasma
  • 176
  • 7.2.3
  • Energy conservation law
  • 178
  • 7.2.4
  • Equation of state and transfer coefficients
  • 178
  • 7.2.5
  • Lorentz force, gravity
  • Gravitational systems
  • 180
  • 7.3
  • Generalized Ohm's law in cosmic plasma
  • 181
  • 7.3.1
  • Basic equations
  • 181
  • 7.3.2
  • General solution
  • 14
  • 184
  • 7.3.3
  • Conductivity of magnetized plasma
  • 184
  • 7.3.4
  • Physical interpretation
  • 186
  • 7.3.5
  • Cosmic plasma conductivity
  • 187
  • 1.2.4
  • 7.3.6
  • Volume charge and quasi-neutrality
  • 188
  • 8
  • Magnetohydrodynamics of Cosmic Plasma
  • 197
  • 8.1
  • Basic assumptions and the MHD equations
  • 197
  • 8.1.1
  • Collisional friction in plasma
  • Old and new simplifying assumptions
  • 197
  • 8.1.2
  • Non-relativistic magnetohydrodynamics
  • 201
  • 8.1.3
  • Relativistic magnetohydrodynamics
  • 203
  • 8.2
  • Magnetic flux conservation. Ideal MHD
  • 14
  • 204
  • 8.2.1
  • Integral and differential forms of the law
  • 204
  • 8.2.2
  • An approximation and the equations of ideal MHD
  • 206
  • 8.3
  • Main approximations in ideal MHD
  • 208
  • 1.3
  • 8.3.1
  • Dimensionless equations
  • 208
  • 8.3.2
  • Weak magnetic fields in cosmic plasma
  • 210
  • 8.3.3
  • Strong magnetic fields in cosmic plasma
  • 211
  • 8.4
  • Exact distribution function
  • Accretion discs and relativistic jets
  • 214
  • 8.4.1
  • Angular momentum transfer in binary stars
  • 214
  • 8.4.2
  • Accretion discs near black holes
  • 216
  • 8.4.3
  • Jets near black holes
  • 5
  • 16
  • 217
  • 8.4.4
  • Flares in accretion disc coronae
  • 220
  • 8.4.5
  • Relativistic jets from disc coronae
  • 221
  • 9
  • Cosmic Plasma Flows in a Strong Magnetic Field
  • 225
  • 2
  • 9.1
  • General formulation of the problem
  • 225
  • 9.2
  • Formalism of two-dimensional problems
  • 227
  • 9.2.1
  • First type of problems
  • 228
  • 9.2.2
  • A Statistical Description of Cosmic Plasma
  • Second type of problems
  • 229
  • 9.3
  • On the existence of continuous flows
  • 234
  • 9.4
  • Flows in the field of a time-dependent dipole
  • 237
  • 9.4.1
  • Plane magnetic dipole fields
  • 21
  • 237
  • 9.4.2
  • Axisymmetric dipole fields in cosmic plasma
  • 241
  • 10
  • MHD Waves in Cosmic Plasma
  • 247
  • 10.1
  • General dispersion equation in ideal MHD
  • 247
  • 2.1
  • 10.2
  • Small-amplitude waves in ideal MHD
  • 250
  • 10.2.1
  • Entropy waves
  • 250
  • 10.2.2
  • Alfven waves
  • 251
  • 10.2.3
  • Averaging of Liouville's equation
  • Magnetoacoustic waves
  • 253
  • 10.2.4
  • Phase velocity diagram
  • 254
  • 10.3
  • Dissipative waves
  • 256
  • 10.3.1
  • Damping of Alfven waves
  • 21
  • 256
  • 10.3.2
  • Slightly damped MHD waves
  • 258
  • 11
  • Discontinuous Flows in a MHD Medium
  • 261
  • 11.1
  • Discontinuity surfaces in hydrodynamics
  • 261
  • 2.1.1
  • 11.1.1
  • Origin of shocks in ordinary hydrodynamics
  • 261
  • 11.1.2
  • Boundary conditions and classification
  • 262
  • 11.1.3
  • Dissipative processes and entropy
  • 264
  • 11.2
  • Averaging over phase space
  • Magnetohydrodynamic discontinuities
  • 265
  • 11.2.1
  • Boundary conditions at a discontinuity surface
  • 265
  • 11.2.2
  • Discontinuities without plasma flows across them
  • 269
  • 11.2.3
  • Perpendicular shock wave
  • 21
  • 271
  • 11.2.4
  • Oblique shock waves
  • 273
  • 11.2.5
  • Peculiar shock waves
  • 279
  • 11.2.6
  • Alfven discontinuity
  • 281
  • 1.1
  • 2.1.2
  • 11.3
  • Transitions between discontinuities
  • 282
  • 11.4
  • Shock waves in collisionless plasma
  • 284
  • 12
  • Evolutionarity of MHD Discontinuities
  • 291
  • 12.1
  • Two statistical postulates
  • Conditions for evolutionarity
  • 291
  • 12.1.1
  • Physical meaning and definition
  • 291
  • 12.1.2
  • Linearized boundary conditions
  • 294
  • 12.1.3
  • Number of small-amplitude waves
  • 23
  • 296
  • 12.1.4
  • Domains of evolutionarity
  • 299
  • 12.2
  • Consequences of evolutionarity conditions
  • 300
  • 12.2.1
  • Order of wave propagation
  • 300
  • 2.1.3
  • 12.2.2
  • Continuous transitions between discontinuities
  • 302
  • 12.3
  • Dissipative effects in evolutionarity
  • 303
  • 12.4
  • Discontinuity structure and evolutionarity
  • 306
  • 12.4.1
  • A statistical mechanism of mixing in phase space
  • Perpendicular shock waves
  • 306
  • 12.4.2
  • Discontinuities with penetrating magnetic field
  • 311
  • 13
  • Particle Acceleration by Shock Waves
  • 315
  • 13.1
  • Two basic mechanisms
  • 24
  • 315
  • 13.2
  • Shock diffusive acceleration
  • 316
  • 13.2.1
  • Canonical model of diffusive mechanism
  • 316
  • 13.2.2
  • Some properties of diffusive mechanism
  • 319
  • 2.1.4
  • 13.2.3
  • Nonlinear effects in diffusive acceleration
  • 320
  • 13.3
  • Shock drift acceleration
  • 321
  • 13.3.1
  • Perpendicular shock waves
  • 321
  • 13.3.2
  • Derivation of a general kinetic equation
  • Quasi-perpendicular shock waves
  • 324
  • 13.3.3
  • Oblique shock waves
  • 328
  • 13.4
  • Collapsing trap effect in solar flares
  • 329
  • 13.4.1
  • Fast plasma outflows and shocks
  • 27
  • 329
  • 13.4.2
  • Particle acceleration in collapsing trap
  • 331
  • 13.4.3
  • Upward motion of coronal HXR source
  • 334
  • 14
  • Cosmic Plasma Equilibrium in Magnetic Field
  • 339
  • 2.2
  • 14.1
  • Virial theorem in MHD
  • 339
  • 14.1.1
  • A brief pre-history
  • 339
  • 14.1.2
  • Deduction of the scalar virial theorem
  • 340
  • 14.1.3
  • Charged Particles in the Electromagnetic Field
  • A collisional integral and correlation functions
  • Some astrophysical applications
  • 343
  • 14.2
  • Force-free fields and Shafranov's theorem
  • 346
  • 28
  • 2.2.1
  • Exact distribution function
  • 28
  • 2.2.2
  • Binary correlation
  • 30
  • 2.2.3
  • Collisional integral and binary correlation
  • 5
  • 31
  • 2.3
  • Equations for correlation functions
  • 33
  • 2.4
  • Approximations for binary collisions
  • 36
  • 2.4.1
  • Small parameters of kinetic theory
  • 36
  • 1.1.1
  • 2.4.2
  • Vlasov kinetic equation
  • 37
  • 2.4.3
  • Landau collisional integral
  • 38
  • 2.4.4
  • Fokker-Plank equation
  • 40
  • 2.5
  • A general formulation of the problem
  • Correlation function and Debye shielding
  • 41
  • 2.5.1
  • Maxwellian distribution function
  • 41
  • 2.5.2
  • Pair correlations and the Debye radius
  • 42
  • 2.5.3
  • Gravitational systems
Dimensions
25 cm.
Extent
xix, 652 pages
Isbn
9780792365129
Isbn Type
(acid-free paper)
Lccn
00060535
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
System control number
  • (OCoLC)44669788
  • (OCoLC)ocm44669788
Label
Cosmic plasma physics, by Boris V. Somov
Publication
Bibliography note
Includes bibliographical references (p. 607-638) and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 5
  • 46
  • 2.6
  • Comments on numerical simulations
  • 47
  • 3
  • Propagation of Accelerated Particles in Cosmic Plasma
  • 51
  • 3.1
  • Derivation of the basic equation
  • 51
  • 1.1.2
  • 3.1.1
  • Basic approximations
  • 51
  • 3.1.2
  • Dimensionless equation
  • 53
  • 3.2
  • A kinetic equation at high speeds
  • 55
  • 3.3
  • Continuity equation for electric charge
  • Classical thick-target model
  • 57
  • 3.4
  • An approximate account of scattering
  • 60
  • 3.5
  • Reverse-current electric-field effect
  • 64
  • 3.5.1
  • Necessity for a beam-neutralizing current
  • 6
  • 64
  • 3.5.2
  • A formulation of a realistic kinetic problem
  • 66
  • 3.5.3
  • Dimensionless parameters of the problem
  • 68
  • 3.5.4
  • Coulomb energy losses
  • 70
  • 1.1.3
  • 3.5.5
  • Basic physical results
  • 72
  • 4
  • Motion of a Particle in Given Fields
  • 75
  • 4.1
  • A particle in constant homogeneous fields
  • 75
  • 4.1.1
  • Initial equations and initial conditions
  • Constant non-magnetic forces
  • 76
  • 4.1.2
  • Constant homogeneous magnetic fields
  • 76
  • 4.1.3
  • Non-magnetic forces in a homogeneous magnetic field
  • 79
  • 4.2
  • Weakly inhomogeneous slowly changing fields
  • 7
  • 81
  • 4.2.1
  • Small parameters in the motion equation
  • 81
  • 4.2.2
  • Expansion in powers of m/e
  • 83
  • 4.2.3
  • Averaging over gyro-motion
  • 85
  • 1.1.4
  • 4.2.4
  • Spiral motion of the guiding center
  • 87
  • 4.2.5
  • Inertial and gradient drifts
  • 88
  • 4.3
  • Adiabatic invariants in cosmic plasmas
  • 92
  • 4.3.1
  • Cosmic plasma applications
  • General definitions
  • 92
  • 4.3.2
  • Three main invariants
  • 92
  • 4.3.3
  • Approximation accuracy. Exact solutions
  • 101
  • 4.4
  • What is magnetic reconnection?
  • 8
  • 101
  • 4.4.1
  • Neutral points of a magnetic field
  • 101
  • 4.4.2
  • Reconnection in vacuum
  • 103
  • 4.4.3
  • Reconnection in plasma
  • 105
  • 1
  • 1.1.5
  • 4.4.4
  • Three stages in the reconnection process
  • 107
  • 4.5
  • Acceleration in current sheets, why?
  • 108
  • 4.5.1
  • Origin of particle acceleration
  • 108
  • 4.5.2
  • Gravitational systems
  • Acceleration in a neutral current sheet
  • 109
  • 5
  • Wave-Particle Interactions in Cosmic Plasma
  • 117
  • 5.1
  • Basis of kinetic theory
  • 117
  • 5.1.1
  • Linearized Vlasov equation
  • 9
  • 117
  • 5.1.2
  • Landau resonance and Landau damping
  • 119
  • 5.1.3
  • Gyroresonance
  • 121
  • 5.2
  • Stochastic acceleration of particles by waves
  • 123
  • 1.2
  • 5.2.1
  • Principles of particle acceleration by waves
  • 123
  • 5.2.2
  • MHD turbulent cascading
  • 125
  • 5.2.3
  • Stochastic acceleration of electrons
  • 127
  • 5.2.4
  • Liouville's theorem
  • Acceleration of protons and heavy ions
  • 128
  • 5.2.5
  • Electron-dominated solar flares
  • 130
  • 5.3
  • Relativistic electron-positron plasma
  • 133
  • 5.4
  • Practice: Problems and Answers
  • 10
  • 134
  • 6
  • Coulomb Collisions of Particles in Cosmic Plasma
  • 137
  • 6.1
  • Close and distant collisions
  • 137
  • 6.1.1
  • Rutherford formula and collision parameters
  • 137
  • 1.2.1
  • 6.1.2
  • Test particle concept
  • 139
  • 6.1.3
  • Particles in a magnetic trap
  • 140
  • 6.1.4
  • Role of distant collisions
  • 141
  • 6.2
  • Continuity in phase space
  • Debye shielding and plasma oscillations
  • 143
  • 6.3
  • Collisional relaxations in cosmic plasma
  • 146
  • 6.3.1
  • Some exact solutions
  • 146
  • 6.3.2
  • Two-temperature plasma in solar flares
  • 10
  • 148
  • 6.3.3
  • An adiabatic model for two-temperature plasma
  • 153
  • 6.3.4
  • Two-temperature accretion flows
  • 154
  • 6.4
  • Dynamic friction in cosmic plasma
  • 155
  • 1.2.2
  • 6.4.1
  • Collisional drag force and energy losses
  • 155
  • 6.4.2
  • Electric runaway
  • 160
  • 6.4.3
  • Thermal runaway in cosmic plasma
  • 162
  • 7
  • Particles and Fields: Exact Self-Consistent Description
  • Character of particle interactions
  • A Hydrodynamic Description of Cosmic Plasma
  • 167
  • 7.1
  • Transition to macroscopic transfer equations
  • 167
  • 7.1.1
  • Distribution function moments
  • 168
  • 7.1.2
  • Equations for moments
  • 12
  • 169
  • 7.1.3
  • General properties of the transfer equations
  • 174
  • 7.2
  • Hydrodynamic equations for cosmic plasma
  • 175
  • 7.2.1
  • Continuity equation
  • 175
  • 1.2.3
  • 7.2.2
  • Momentum conservation law in cosmic plasma
  • 176
  • 7.2.3
  • Energy conservation law
  • 178
  • 7.2.4
  • Equation of state and transfer coefficients
  • 178
  • 7.2.5
  • Lorentz force, gravity
  • Gravitational systems
  • 180
  • 7.3
  • Generalized Ohm's law in cosmic plasma
  • 181
  • 7.3.1
  • Basic equations
  • 181
  • 7.3.2
  • General solution
  • 14
  • 184
  • 7.3.3
  • Conductivity of magnetized plasma
  • 184
  • 7.3.4
  • Physical interpretation
  • 186
  • 7.3.5
  • Cosmic plasma conductivity
  • 187
  • 1.2.4
  • 7.3.6
  • Volume charge and quasi-neutrality
  • 188
  • 8
  • Magnetohydrodynamics of Cosmic Plasma
  • 197
  • 8.1
  • Basic assumptions and the MHD equations
  • 197
  • 8.1.1
  • Collisional friction in plasma
  • Old and new simplifying assumptions
  • 197
  • 8.1.2
  • Non-relativistic magnetohydrodynamics
  • 201
  • 8.1.3
  • Relativistic magnetohydrodynamics
  • 203
  • 8.2
  • Magnetic flux conservation. Ideal MHD
  • 14
  • 204
  • 8.2.1
  • Integral and differential forms of the law
  • 204
  • 8.2.2
  • An approximation and the equations of ideal MHD
  • 206
  • 8.3
  • Main approximations in ideal MHD
  • 208
  • 1.3
  • 8.3.1
  • Dimensionless equations
  • 208
  • 8.3.2
  • Weak magnetic fields in cosmic plasma
  • 210
  • 8.3.3
  • Strong magnetic fields in cosmic plasma
  • 211
  • 8.4
  • Exact distribution function
  • Accretion discs and relativistic jets
  • 214
  • 8.4.1
  • Angular momentum transfer in binary stars
  • 214
  • 8.4.2
  • Accretion discs near black holes
  • 216
  • 8.4.3
  • Jets near black holes
  • 5
  • 16
  • 217
  • 8.4.4
  • Flares in accretion disc coronae
  • 220
  • 8.4.5
  • Relativistic jets from disc coronae
  • 221
  • 9
  • Cosmic Plasma Flows in a Strong Magnetic Field
  • 225
  • 2
  • 9.1
  • General formulation of the problem
  • 225
  • 9.2
  • Formalism of two-dimensional problems
  • 227
  • 9.2.1
  • First type of problems
  • 228
  • 9.2.2
  • A Statistical Description of Cosmic Plasma
  • Second type of problems
  • 229
  • 9.3
  • On the existence of continuous flows
  • 234
  • 9.4
  • Flows in the field of a time-dependent dipole
  • 237
  • 9.4.1
  • Plane magnetic dipole fields
  • 21
  • 237
  • 9.4.2
  • Axisymmetric dipole fields in cosmic plasma
  • 241
  • 10
  • MHD Waves in Cosmic Plasma
  • 247
  • 10.1
  • General dispersion equation in ideal MHD
  • 247
  • 2.1
  • 10.2
  • Small-amplitude waves in ideal MHD
  • 250
  • 10.2.1
  • Entropy waves
  • 250
  • 10.2.2
  • Alfven waves
  • 251
  • 10.2.3
  • Averaging of Liouville's equation
  • Magnetoacoustic waves
  • 253
  • 10.2.4
  • Phase velocity diagram
  • 254
  • 10.3
  • Dissipative waves
  • 256
  • 10.3.1
  • Damping of Alfven waves
  • 21
  • 256
  • 10.3.2
  • Slightly damped MHD waves
  • 258
  • 11
  • Discontinuous Flows in a MHD Medium
  • 261
  • 11.1
  • Discontinuity surfaces in hydrodynamics
  • 261
  • 2.1.1
  • 11.1.1
  • Origin of shocks in ordinary hydrodynamics
  • 261
  • 11.1.2
  • Boundary conditions and classification
  • 262
  • 11.1.3
  • Dissipative processes and entropy
  • 264
  • 11.2
  • Averaging over phase space
  • Magnetohydrodynamic discontinuities
  • 265
  • 11.2.1
  • Boundary conditions at a discontinuity surface
  • 265
  • 11.2.2
  • Discontinuities without plasma flows across them
  • 269
  • 11.2.3
  • Perpendicular shock wave
  • 21
  • 271
  • 11.2.4
  • Oblique shock waves
  • 273
  • 11.2.5
  • Peculiar shock waves
  • 279
  • 11.2.6
  • Alfven discontinuity
  • 281
  • 1.1
  • 2.1.2
  • 11.3
  • Transitions between discontinuities
  • 282
  • 11.4
  • Shock waves in collisionless plasma
  • 284
  • 12
  • Evolutionarity of MHD Discontinuities
  • 291
  • 12.1
  • Two statistical postulates
  • Conditions for evolutionarity
  • 291
  • 12.1.1
  • Physical meaning and definition
  • 291
  • 12.1.2
  • Linearized boundary conditions
  • 294
  • 12.1.3
  • Number of small-amplitude waves
  • 23
  • 296
  • 12.1.4
  • Domains of evolutionarity
  • 299
  • 12.2
  • Consequences of evolutionarity conditions
  • 300
  • 12.2.1
  • Order of wave propagation
  • 300
  • 2.1.3
  • 12.2.2
  • Continuous transitions between discontinuities
  • 302
  • 12.3
  • Dissipative effects in evolutionarity
  • 303
  • 12.4
  • Discontinuity structure and evolutionarity
  • 306
  • 12.4.1
  • A statistical mechanism of mixing in phase space
  • Perpendicular shock waves
  • 306
  • 12.4.2
  • Discontinuities with penetrating magnetic field
  • 311
  • 13
  • Particle Acceleration by Shock Waves
  • 315
  • 13.1
  • Two basic mechanisms
  • 24
  • 315
  • 13.2
  • Shock diffusive acceleration
  • 316
  • 13.2.1
  • Canonical model of diffusive mechanism
  • 316
  • 13.2.2
  • Some properties of diffusive mechanism
  • 319
  • 2.1.4
  • 13.2.3
  • Nonlinear effects in diffusive acceleration
  • 320
  • 13.3
  • Shock drift acceleration
  • 321
  • 13.3.1
  • Perpendicular shock waves
  • 321
  • 13.3.2
  • Derivation of a general kinetic equation
  • Quasi-perpendicular shock waves
  • 324
  • 13.3.3
  • Oblique shock waves
  • 328
  • 13.4
  • Collapsing trap effect in solar flares
  • 329
  • 13.4.1
  • Fast plasma outflows and shocks
  • 27
  • 329
  • 13.4.2
  • Particle acceleration in collapsing trap
  • 331
  • 13.4.3
  • Upward motion of coronal HXR source
  • 334
  • 14
  • Cosmic Plasma Equilibrium in Magnetic Field
  • 339
  • 2.2
  • 14.1
  • Virial theorem in MHD
  • 339
  • 14.1.1
  • A brief pre-history
  • 339
  • 14.1.2
  • Deduction of the scalar virial theorem
  • 340
  • 14.1.3
  • Charged Particles in the Electromagnetic Field
  • A collisional integral and correlation functions
  • Some astrophysical applications
  • 343
  • 14.2
  • Force-free fields and Shafranov's theorem
  • 346
  • 28
  • 2.2.1
  • Exact distribution function
  • 28
  • 2.2.2
  • Binary correlation
  • 30
  • 2.2.3
  • Collisional integral and binary correlation
  • 5
  • 31
  • 2.3
  • Equations for correlation functions
  • 33
  • 2.4
  • Approximations for binary collisions
  • 36
  • 2.4.1
  • Small parameters of kinetic theory
  • 36
  • 1.1.1
  • 2.4.2
  • Vlasov kinetic equation
  • 37
  • 2.4.3
  • Landau collisional integral
  • 38
  • 2.4.4
  • Fokker-Plank equation
  • 40
  • 2.5
  • A general formulation of the problem
  • Correlation function and Debye shielding
  • 41
  • 2.5.1
  • Maxwellian distribution function
  • 41
  • 2.5.2
  • Pair correlations and the Debye radius
  • 42
  • 2.5.3
  • Gravitational systems
Dimensions
25 cm.
Extent
xix, 652 pages
Isbn
9780792365129
Isbn Type
(acid-free paper)
Lccn
00060535
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
System control number
  • (OCoLC)44669788
  • (OCoLC)ocm44669788

Library Locations

  • African Studies LibraryBorrow it
    771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Alumni Medical LibraryBorrow it
    72 East Concord Street, Boston, MA, 02118, US
    42.336388 -71.072393
  • Astronomy LibraryBorrow it
    725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US
    42.350259 -71.105717
  • Fineman and Pappas Law LibrariesBorrow it
    765 Commonwealth Avenue, Boston, MA, 02215, US
    42.350979 -71.107023
  • Frederick S. Pardee Management LibraryBorrow it
    595 Commonwealth Avenue, Boston, MA, 02215, US
    42.349626 -71.099547
  • Howard Gotlieb Archival Research CenterBorrow it
    771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Mugar Memorial LibraryBorrow it
    771 Commonwealth Avenue, Boston, MA, 02215, US
    42.350723 -71.108227
  • Music LibraryBorrow it
    771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Pikering Educational Resources LibraryBorrow it
    2 Silber Way, Boston, MA, 02215, US
    42.349804 -71.101425
  • School of Theology LibraryBorrow it
    745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350494 -71.107235
  • Science & Engineering LibraryBorrow it
    38 Cummington Mall, Boston, MA, 02215, US
    42.348472 -71.102257
  • Stone Science LibraryBorrow it
    675 Commonwealth Avenue, Boston, MA, 02445, US
    42.350103 -71.103784
Processing Feedback ...