The Resource Design and fabrication of self-powered micro-harvesters : rotating and vibrating micro-power systems, C.T. Pan, Y.M. Hwang, Liwei Lin, Ying-Chung Chen

Design and fabrication of self-powered micro-harvesters : rotating and vibrating micro-power systems, C.T. Pan, Y.M. Hwang, Liwei Lin, Ying-Chung Chen

Label
Design and fabrication of self-powered micro-harvesters : rotating and vibrating micro-power systems
Title
Design and fabrication of self-powered micro-harvesters
Title remainder
rotating and vibrating micro-power systems
Statement of responsibility
C.T. Pan, Y.M. Hwang, Liwei Lin, Ying-Chung Chen
Creator
Contributor
Author
Provider
Publisher
Subject
Language
eng
Cataloging source
N$T
http://library.link/vocab/creatorName
Pan, C. T
Index
no index present
LC call number
TK7875
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorDate
  • 1958-
  • 1956-
http://library.link/vocab/relatedWorkOrContributorName
  • IEEE Xplore
  • John Wiley & Sons
  • Institute of Electrical and Electronics Engineers
  • Hwang, Y. M.
  • Lin, Liwei
  • Chen, Ying-Chung
http://library.link/vocab/subjectName
  • Microelectromechanical systems
  • Electric generators
  • Energy harvesting
  • TECHNOLOGY & ENGINEERING
  • Electric generators
  • Energy harvesting
  • Microelectromechanical systems
Label
Design and fabrication of self-powered micro-harvesters : rotating and vibrating micro-power systems, C.T. Pan, Y.M. Hwang, Liwei Lin, Ying-Chung Chen
Instantiates
Publication
Note
Made available via IEEE Xplore Digital Library
Antecedent source
unknown
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Machine generated contents note: 1.Introduction -- 1.1.Background -- 1.2.Energy Harvesters -- 1.2.1.Piezoelectric ZnO Energy Harvester -- 1.2.2.Vibrational Electromagnetic Generators -- 1.2.3.Rotary Electromagnetic Generators -- 1.2.4.NFES Piezoelectric PVDF Energy Harvester -- 1.3.Overview -- 2.Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films -- 2.1.Introduction -- 2.2.Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters -- 2.2.1.Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester -- 2.2.2.Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film -- 2.2.5.Optimal Thickness of PET Substrate -- 2.2.4.Model Solution of Cantilever Plate Equation -- 2.2.5.Vibration-Induced Electric Potential and Electric Power -- 2.2.6.Static Analysis to Calculate the Optimal Thickness of the PET Substrate -- 2.2.7.Model Analysis and Harmonic Analysis -- 2.2.8.Results of Model Analysis and Harmonic Analysis -- 2.3.The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates -- 2.3.1.Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates -- 2.3.2.Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates -- 2.3.3.Sputtering of Al and ITO Conductive Thin Films on PET Substrates -- 2.3.4.Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering -- 2.3.5.Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions -- 2.3.6.Application of ZnO/PET-Based Generator to Flash Signal LED Module -- 2.3.7.Design and Performance of a Broad Bandwidth Energy Harvesting System -- 2.4.Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators -- 2.4.1.Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.2.Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.3.Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.4.Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators -- 2.4.5.Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.6.Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates -- 2.4.7.Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.8.Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 -- 2.4.9.Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator -- 2.5.Summary -- References -- 3.Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators -- 3.1.Introduction -- 3.2.Comparisons between MCTG and SMTG -- 3.2.1.Magnetic Core-Type Generator (MCTG) -- 3.2.2.Sided Magnet-Type Generator (SMTG) -- 3.3.Analysis of Electromagnetic Vibration-Induced Microgenerators -- 3.3.1.Design of Electromagnetic Vibration-Induced Microgenerators -- 3.3.2.Analysis Mode of the Microvibration Structure -- 3.3.3.Analysis Mode of Magnetic Field -- 3.3.4.Evaluation of Various Parameters of Power Output -- 3.4.Analytical Results and Discussion -- 3.4.1.Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring -- 3.4.2.Finite Element Models for Magnetic Density Distribution -- 3.4.3.Power Output Evaluation -- 3.5.Fabrication of Microcoil for Microgenerator -- 3.5.1.Microspring and Induction Coil -- 3.5.2.Microspring and Magnet -- 3.6.Tests and Experiments -- 3.6.1.Measurement System -- 3.6.2.Measurement Results and Discussion -- 3.6.3.Comparison between Measured Results and Analytical Values -- 3.7.Conclusions -- 3.7.1.Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field -- 3.7.2.Fabrication of LTCC Microsensor -- 3.7.3.Measurement and Analysis Results -- 3.8.Summary -- References -- 4.Design and Fabrication of Rotary Electromagnetic Microgenerator -- 4.1.Introduction -- 4.1.1.Piezoelectric, Thermoelectric, and Electrostatic Generators -- 4.1.2.Vibrational Electromagnetic Generators -- 4.1.3.Rotary Electromagnetic Generators -- 4.1.4.Generator Processes -- 4.1.5.Lithographie Galvanoformung Abformung Process -- 4.1.6.Winding Processes -- 4.1.7.LTCC -- 4.1.8.Printed Circuit Board Processes -- 4.1.9.Finite-Element Simulation and Analytical Solutions -- 4.2 Case 1 Winding Generator -- 4.2.1.Design -- 4.2.2.Analytical Formulation -- 4.2.3.Simulation -- 4.2.4.Fabrication Process -- 4.2.5.Results and Discussion (1) -- 4.2.6.Results and Discussion (2) -- 4.3 Case 2 LTCC Generator -- 4.3.1.Simulation -- 4.3.2.Analytical Theorem of Microgenerator Electromagnetism -- 4.3.3.Simplification -- 4.3.4.Analysis of Vector Magnetic Potential -- 4.3.5.Analytical Solutions for Power Generation -- 4.4.Fabrication -- 4.4.1.LTCC Process -- 4.4.2.Magnet Process -- 4.4.3.Measurement Set-up -- 4.5.Results and Discussion -- 4.5.1.Design -- 4.5.2.Analytical Solutions -- 4.5.3.Fabrication -- References -- 5.Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters -- 5.1.Introduction -- 5.2.Fundamentals of Electrospinning Technology -- 5.2.1.Introduction to Electrospinning -- 5.2.2.Alignment and Assembly of Nanofibers -- 5.3.Near-Field Electrospinning -- 5.3.1.Introduction and Background -- 5.3.2.Principles of Operation -- 5.3.3.Process and Experiment -- 5.3.4.Summary -- 5.4.Continuous NFES -- 5.4.1.Introduction and Background -- 5.4.2.Principles of Operation -- 5.4.3.Controllability and Continuity -- 5.4.4.Process Characterization -- 5.4.5.Summary -- 5.5.Direct-Write Piezoelectric Nanogenerator -- 5.5.1.Introduction and Background -- 5.5.2.Polyvinylidene Fluoride -- 5.5.3.Theoretical Studies for Realization of Electrospun PVDF Nanofibers -- 5.5.4.Electrospinning of PVDF Nanofibers -- 5.5.5.Detailed Discussion of Process Parameters -- 5.5.6.Experimental Realization of PVDF Nanogenerator -- 5.5.7.Summary -- 5.6.Materials, Structure, and Operation of Nanogenerator with Future Prospects -- 5.6.1.Material and Structural Characteristics -- 5.6.2.Operation of Nanogenerator -- 5.6.3.Summary and Future Prospects -- 5.7.Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate -- 5.7.1.Introduction and Background -- 5.7.2.Working Principle -- 5.7.3.Device Fabrication -- 5.7.4.Experimental Results -- 5.7.5.Summary -- 5.8.Conclusion -- 5.8.1.Near-Field Electrospinning -- 5.8.2.Continuous Near-Field Electrospinning -- 5.8.3.Direct-Write Piezoelectric PVDF -- 5.9.Future Directions -- 5.9.1.NFES Integrated Nanofiber Sensors -- 5.9.2.NFES One-Dimensional Sub-Wavelength Waveguide -- 5.9.3.NFES Biological Applications -- 5.9.4.Direct-Write Piezoelectric PVDF Nanogenerators -- References
Dimensions
unknown
Extent
1 online resource (xv, 269 pages)
File format
unknown
Form of item
online
Isbn
9781118487822
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
Stock number
3d4d0e16-aa67-4ddf-a6c3-8db79ea2fb94
System control number
  • (OCoLC)880421150
  • (OCoLC)ocn880421150
Label
Design and fabrication of self-powered micro-harvesters : rotating and vibrating micro-power systems, C.T. Pan, Y.M. Hwang, Liwei Lin, Ying-Chung Chen
Publication
Note
Made available via IEEE Xplore Digital Library
Antecedent source
unknown
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
Machine generated contents note: 1.Introduction -- 1.1.Background -- 1.2.Energy Harvesters -- 1.2.1.Piezoelectric ZnO Energy Harvester -- 1.2.2.Vibrational Electromagnetic Generators -- 1.2.3.Rotary Electromagnetic Generators -- 1.2.4.NFES Piezoelectric PVDF Energy Harvester -- 1.3.Overview -- 2.Design and Fabrication of Flexible Piezoelectric Generators Based on ZnO Thin Films -- 2.1.Introduction -- 2.2.Characterization and Theoretical Analysis of Flexible ZnO-Based Piezoelectric Harvesters -- 2.2.1.Vibration Energy Conversion Model of Film-Based Flexible Piezoelectric Energy Harvester -- 2.2.2.Piezoelectricity and Polarity Test of Piezoelectric ZnO Thin Film -- 2.2.5.Optimal Thickness of PET Substrate -- 2.2.4.Model Solution of Cantilever Plate Equation -- 2.2.5.Vibration-Induced Electric Potential and Electric Power -- 2.2.6.Static Analysis to Calculate the Optimal Thickness of the PET Substrate -- 2.2.7.Model Analysis and Harmonic Analysis -- 2.2.8.Results of Model Analysis and Harmonic Analysis -- 2.3.The Fabrication of Flexible Piezoelectric ZnO Harvesters on PET Substrates -- 2.3.1.Bonding Process to Fabricate UV-Curable Resin Lump Structures on PET Substrates -- 2.3.2.Near-Field Electro-Spinning with Stereolithography Technique to Directly Write 3D UV-Curable Resin Patterns on PET Substrates -- 2.3.3.Sputtering of Al and ITO Conductive Thin Films on PET Substrates -- 2.3.4.Deposition of Piezoelectric ZnO Thin Films by Using RF Magnetron Sputtering -- 2.3.5.Testing a Single Energy Harvester under Resonant and Non-Resonant Conditions -- 2.3.6.Application of ZnO/PET-Based Generator to Flash Signal LED Module -- 2.3.7.Design and Performance of a Broad Bandwidth Energy Harvesting System -- 2.4.Fabrication and Performance of Flexible ZnO/SUS304-Based Piezoelectric Generators -- 2.4.1.Deposition of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.2.Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.3.Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.4.Characterization of ZnO/SUS304-Based Flexible Piezoelectric Generators -- 2.4.5.Structural and Morphological Properties of Piezoelectric ZnO Thin Films on Stainless Steel Substrates -- 2.4.6.Analysis of Adhesion of ZnO Thin Films on Stainless Steel Substrates -- 2.4.7.Electrical Properties of Single-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator -- 2.4.8.Characterization of Double-Sided ZnO/SUS304-Based Flexible Piezoelectric Generator: Analysis and Modification of Back Surface of SUS304 -- 2.4.9.Electrical Properties of Double-Sided ZnO/SUS304-Based Piezoelectric Generator -- 2.5.Summary -- References -- 3.Design and Fabrication of Vibration-Induced Electromagnetic Microgenerators -- 3.1.Introduction -- 3.2.Comparisons between MCTG and SMTG -- 3.2.1.Magnetic Core-Type Generator (MCTG) -- 3.2.2.Sided Magnet-Type Generator (SMTG) -- 3.3.Analysis of Electromagnetic Vibration-Induced Microgenerators -- 3.3.1.Design of Electromagnetic Vibration-Induced Microgenerators -- 3.3.2.Analysis Mode of the Microvibration Structure -- 3.3.3.Analysis Mode of Magnetic Field -- 3.3.4.Evaluation of Various Parameters of Power Output -- 3.4.Analytical Results and Discussion -- 3.4.1.Analysis of Bending Stress within the Supporting Beam of the Spiral Microspring -- 3.4.2.Finite Element Models for Magnetic Density Distribution -- 3.4.3.Power Output Evaluation -- 3.5.Fabrication of Microcoil for Microgenerator -- 3.5.1.Microspring and Induction Coil -- 3.5.2.Microspring and Magnet -- 3.6.Tests and Experiments -- 3.6.1.Measurement System -- 3.6.2.Measurement Results and Discussion -- 3.6.3.Comparison between Measured Results and Analytical Values -- 3.7.Conclusions -- 3.7.1.Analysis of Microgenerators and Vibration Mode and Simulation of the Magnetic Field -- 3.7.2.Fabrication of LTCC Microsensor -- 3.7.3.Measurement and Analysis Results -- 3.8.Summary -- References -- 4.Design and Fabrication of Rotary Electromagnetic Microgenerator -- 4.1.Introduction -- 4.1.1.Piezoelectric, Thermoelectric, and Electrostatic Generators -- 4.1.2.Vibrational Electromagnetic Generators -- 4.1.3.Rotary Electromagnetic Generators -- 4.1.4.Generator Processes -- 4.1.5.Lithographie Galvanoformung Abformung Process -- 4.1.6.Winding Processes -- 4.1.7.LTCC -- 4.1.8.Printed Circuit Board Processes -- 4.1.9.Finite-Element Simulation and Analytical Solutions -- 4.2 Case 1 Winding Generator -- 4.2.1.Design -- 4.2.2.Analytical Formulation -- 4.2.3.Simulation -- 4.2.4.Fabrication Process -- 4.2.5.Results and Discussion (1) -- 4.2.6.Results and Discussion (2) -- 4.3 Case 2 LTCC Generator -- 4.3.1.Simulation -- 4.3.2.Analytical Theorem of Microgenerator Electromagnetism -- 4.3.3.Simplification -- 4.3.4.Analysis of Vector Magnetic Potential -- 4.3.5.Analytical Solutions for Power Generation -- 4.4.Fabrication -- 4.4.1.LTCC Process -- 4.4.2.Magnet Process -- 4.4.3.Measurement Set-up -- 4.5.Results and Discussion -- 4.5.1.Design -- 4.5.2.Analytical Solutions -- 4.5.3.Fabrication -- References -- 5.Design and Fabrication of Electrospun PVDF Piezo-Energy Harvesters -- 5.1.Introduction -- 5.2.Fundamentals of Electrospinning Technology -- 5.2.1.Introduction to Electrospinning -- 5.2.2.Alignment and Assembly of Nanofibers -- 5.3.Near-Field Electrospinning -- 5.3.1.Introduction and Background -- 5.3.2.Principles of Operation -- 5.3.3.Process and Experiment -- 5.3.4.Summary -- 5.4.Continuous NFES -- 5.4.1.Introduction and Background -- 5.4.2.Principles of Operation -- 5.4.3.Controllability and Continuity -- 5.4.4.Process Characterization -- 5.4.5.Summary -- 5.5.Direct-Write Piezoelectric Nanogenerator -- 5.5.1.Introduction and Background -- 5.5.2.Polyvinylidene Fluoride -- 5.5.3.Theoretical Studies for Realization of Electrospun PVDF Nanofibers -- 5.5.4.Electrospinning of PVDF Nanofibers -- 5.5.5.Detailed Discussion of Process Parameters -- 5.5.6.Experimental Realization of PVDF Nanogenerator -- 5.5.7.Summary -- 5.6.Materials, Structure, and Operation of Nanogenerator with Future Prospects -- 5.6.1.Material and Structural Characteristics -- 5.6.2.Operation of Nanogenerator -- 5.6.3.Summary and Future Prospects -- 5.7.Case Study: Large-Array Electrospun PVDF Nanogenerators on a Flexible Substrate -- 5.7.1.Introduction and Background -- 5.7.2.Working Principle -- 5.7.3.Device Fabrication -- 5.7.4.Experimental Results -- 5.7.5.Summary -- 5.8.Conclusion -- 5.8.1.Near-Field Electrospinning -- 5.8.2.Continuous Near-Field Electrospinning -- 5.8.3.Direct-Write Piezoelectric PVDF -- 5.9.Future Directions -- 5.9.1.NFES Integrated Nanofiber Sensors -- 5.9.2.NFES One-Dimensional Sub-Wavelength Waveguide -- 5.9.3.NFES Biological Applications -- 5.9.4.Direct-Write Piezoelectric PVDF Nanogenerators -- References
Dimensions
unknown
Extent
1 online resource (xv, 269 pages)
File format
unknown
Form of item
online
Isbn
9781118487822
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
Stock number
3d4d0e16-aa67-4ddf-a6c3-8db79ea2fb94
System control number
  • (OCoLC)880421150
  • (OCoLC)ocn880421150

Library Locations

  • African Studies LibraryBorrow it
    771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Alumni Medical LibraryBorrow it
    72 East Concord Street, Boston, MA, 02118, US
    42.336388 -71.072393
  • Astronomy LibraryBorrow it
    725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US
    42.350259 -71.105717
  • Fineman and Pappas Law LibrariesBorrow it
    765 Commonwealth Avenue, Boston, MA, 02215, US
    42.350979 -71.107023
  • Frederick S. Pardee Management LibraryBorrow it
    595 Commonwealth Avenue, Boston, MA, 02215, US
    42.349626 -71.099547
  • Howard Gotlieb Archival Research CenterBorrow it
    771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Mugar Memorial LibraryBorrow it
    771 Commonwealth Avenue, Boston, MA, 02215, US
    42.350723 -71.108227
  • Music LibraryBorrow it
    771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Pikering Educational Resources LibraryBorrow it
    2 Silber Way, Boston, MA, 02215, US
    42.349804 -71.101425
  • School of Theology LibraryBorrow it
    745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350494 -71.107235
  • Science & Engineering LibraryBorrow it
    38 Cummington Mall, Boston, MA, 02215, US
    42.348472 -71.102257
  • Stone Science LibraryBorrow it
    675 Commonwealth Avenue, Boston, MA, 02445, US
    42.350103 -71.103784
Processing Feedback ...