The Resource Galois cohomology of elliptic curves, J. Coates, R. Sujatha

Galois cohomology of elliptic curves, J. Coates, R. Sujatha

Label
Galois cohomology of elliptic curves
Title
Galois cohomology of elliptic curves
Statement of responsibility
J. Coates, R. Sujatha
Creator
Contributor
Subject
Language
eng
Member of
Action
committed to retain for EAST
Cataloging source
TOL
http://library.link/vocab/creatorName
Coates, J.
Index
no index present
LC call number
QA567.2.E44
LC item number
C63 2000
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Sujatha, R
  • Tata Institute of Fundamental Research
http://library.link/vocab/subjectName
  • Curves, Elliptic
  • Iwasawa theory
  • Finite fields (Algebra)
  • Homology theory
  • Galois theory
  • Courbes elliptiques
  • Galois, Théorie de
  • Homologie
  • Curves, Elliptic
  • Finite fields (Algebra)
  • Galois theory
  • Homology theory
  • Iwasawa theory
Label
Galois cohomology of elliptic curves, J. Coates, R. Sujatha
Instantiates
Publication
Note
"Published for the Tata Institute of Fundamental Research."
Bibliography note
Includes bibliographical references (p. 97-100)
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
1. Basic Results from Galois Cohomology -- Poitou-Tate sequence -- Cassels-Poitou-Tate sequence -- Cassels-Poitou-Tate sequence for elliptic curves -- 2. The Iwasawa Theory of the Selmer Group -- The fundamental diagram -- Cyclotomic theory -- The division field case -- 3. The Euler Characteristic Formula -- Cyclotomic theory -- The division field case -- 4. Numerical Examples over the Cyclotomic Z[subscript p]-extension of Q -- Iwasawa theory over Q[subscript [infinity]] for the curves of conductor 11 -- Iwasawa theory over Q[subscript [infinity]] for the curves of conductor 294 -- 5. Numerical examples over Q([mu][subscript p][infinity]) -- General strategy for the curves of conductor 11 over Q([mu][subscript 5][infinity]) -- The curve A[subscript 0] -- The curve A[subscript 2] -- Infinite descent on A[subscript 1] over Q([mu][subscript 5]) -- The curves of conductor 294 over Q([mu][subscript 7][infinity] -- Structure theory of Iwasawa modules -- Deeply ramified p-adic field and cyclotomic extensions -- Tate parametrization of elliptic curves -- Multiplicative Kummer generators
Dimensions
24 cm.
Extent
ix, 100 pages
Isbn
9788173192937
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
System control number
  • (OCoLC)44880459
  • (OCoLC)ocm44880459
Label
Galois cohomology of elliptic curves, J. Coates, R. Sujatha
Publication
Note
"Published for the Tata Institute of Fundamental Research."
Bibliography note
Includes bibliographical references (p. 97-100)
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
1. Basic Results from Galois Cohomology -- Poitou-Tate sequence -- Cassels-Poitou-Tate sequence -- Cassels-Poitou-Tate sequence for elliptic curves -- 2. The Iwasawa Theory of the Selmer Group -- The fundamental diagram -- Cyclotomic theory -- The division field case -- 3. The Euler Characteristic Formula -- Cyclotomic theory -- The division field case -- 4. Numerical Examples over the Cyclotomic Z[subscript p]-extension of Q -- Iwasawa theory over Q[subscript [infinity]] for the curves of conductor 11 -- Iwasawa theory over Q[subscript [infinity]] for the curves of conductor 294 -- 5. Numerical examples over Q([mu][subscript p][infinity]) -- General strategy for the curves of conductor 11 over Q([mu][subscript 5][infinity]) -- The curve A[subscript 0] -- The curve A[subscript 2] -- Infinite descent on A[subscript 1] over Q([mu][subscript 5]) -- The curves of conductor 294 over Q([mu][subscript 7][infinity] -- Structure theory of Iwasawa modules -- Deeply ramified p-adic field and cyclotomic extensions -- Tate parametrization of elliptic curves -- Multiplicative Kummer generators
Dimensions
24 cm.
Extent
ix, 100 pages
Isbn
9788173192937
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
System control number
  • (OCoLC)44880459
  • (OCoLC)ocm44880459

Library Locations

  • African Studies LibraryBorrow it
    771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Alumni Medical LibraryBorrow it
    72 East Concord Street, Boston, MA, 02118, US
    42.336388 -71.072393
  • Astronomy LibraryBorrow it
    725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US
    42.350259 -71.105717
  • Fineman and Pappas Law LibrariesBorrow it
    765 Commonwealth Avenue, Boston, MA, 02215, US
    42.350979 -71.107023
  • Frederick S. Pardee Management LibraryBorrow it
    595 Commonwealth Avenue, Boston, MA, 02215, US
    42.349626 -71.099547
  • Howard Gotlieb Archival Research CenterBorrow it
    771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Mugar Memorial LibraryBorrow it
    771 Commonwealth Avenue, Boston, MA, 02215, US
    42.350723 -71.108227
  • Music LibraryBorrow it
    771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Pikering Educational Resources LibraryBorrow it
    2 Silber Way, Boston, MA, 02215, US
    42.349804 -71.101425
  • School of Theology LibraryBorrow it
    745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350494 -71.107235
  • Science & Engineering LibraryBorrow it
    38 Cummington Mall, Boston, MA, 02215, US
    42.348472 -71.102257
  • Stone Science LibraryBorrow it
    675 Commonwealth Avenue, Boston, MA, 02445, US
    42.350103 -71.103784
Processing Feedback ...