Borrow it
- African Studies Library
- Alumni Medical Library
- Astronomy Library
- Fineman and Pappas Law Libraries
- Frederick S. Pardee Management Library
- Howard Gotlieb Archival Research Center
- Mugar Memorial Library
- Music Library
- Pikering Educational Resources Library
- School of Theology Library
- Science & Engineering Library
- Stone Science Library
The Resource Grouping multidimensional data : recent advances in clustering, Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.), (electronic resource)
Grouping multidimensional data : recent advances in clustering, Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.), (electronic resource)
Resource Information
The item Grouping multidimensional data : recent advances in clustering, Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.), (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Boston University Libraries.This item is available to borrow from all library branches.
Resource Information
The item Grouping multidimensional data : recent advances in clustering, Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.), (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Boston University Libraries.
This item is available to borrow from all library branches.
- Summary
- Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection. Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview. The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas
- Language
- eng
- Extent
- 1 online resource (xii, 268 pages)
- Contents
-
- The Star Clustering Algorithm for Information Organization
- A Survey of Clustering Data Mining Techniques
- Similarity-Based Text Clustering: A Comparative Study
- Clustering Very Large Data Sets with Principal Direction Divisive Partitioning
- Clustering with Entropy-Like k-Means Algorithms
- Sampling Methods for Building Initial Partitions
- TMG: A MATLAB Toolbox for Generating Term-Document Matrices from Text Collections
- Criterion Functions for Clustering on High-Dimensional Data
- Isbn
- 9783540283485
- Label
- Grouping multidimensional data : recent advances in clustering
- Title
- Grouping multidimensional data
- Title remainder
- recent advances in clustering
- Statement of responsibility
- Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.)
- Subject
-
- Classification automatique (Statistique)
- Cluster analysis
- Cluster analysis
- Computer Science
- Computer science
- Data mining
- Data mining
- Electronic books
- Electronic books
- Electronic resources
- Exploration de données (Informatique)
- Gegevensmodellering
- Gegevensverzameling
- Information Storage and Retrieval
- Information storage and retrieval systems
- Informatique
- MATHEMATICS -- Probability & Statistics | General
- Math Applications in Computer Science
- Optical pattern recognition
- Pattern Recognition
- Language
- eng
- Summary
- Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection. Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview. The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas
- Cataloging source
- GW5XE
- Image bit depth
- 0
- LC call number
- QA278
- LC item number
- .G82 2006eb
- Literary form
- non fiction
- Nature of contents
- dictionaries
- http://library.link/vocab/relatedWorkOrContributorDate
-
- 1954-
- 1957-
- http://library.link/vocab/relatedWorkOrContributorName
-
- SpringerLink
- Kogan, Jacob
- Nicholas, Charles K.
- Teboulle, M
- http://library.link/vocab/subjectName
-
- Cluster analysis
- Data mining
- Classification automatique (Statistique)
- Exploration de données (Informatique)
- MATHEMATICS
- Informatique
- Gegevensverzameling
- Gegevensmodellering
- Computer Science
- Information Storage and Retrieval
- Math Applications in Computer Science
- Pattern Recognition
- Computer science
- Information storage and retrieval systems
- Optical pattern recognition
- Data mining
- Electronic books
- Cluster analysis
- Label
- Grouping multidimensional data : recent advances in clustering, Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.), (electronic resource)
- Antecedent source
- mixed
- Bibliography note
- Includes bibliographical references (pages 239-264) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- not applicable
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- The Star Clustering Algorithm for Information Organization -- A Survey of Clustering Data Mining Techniques -- Similarity-Based Text Clustering: A Comparative Study -- Clustering Very Large Data Sets with Principal Direction Divisive Partitioning -- Clustering with Entropy-Like k-Means Algorithms -- Sampling Methods for Building Initial Partitions -- TMG: A MATLAB Toolbox for Generating Term-Document Matrices from Text Collections -- Criterion Functions for Clustering on High-Dimensional Data
- Dimensions
- unknown
- Extent
- 1 online resource (xii, 268 pages)
- File format
- multiple file formats
- Form of item
-
- online
- electronic
- Isbn
- 9783540283485
- Level of compression
- uncompressed
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- Quality assurance targets
- absent
- Reformatting quality
- access
- Specific material designation
- remote
- Stock number
- 978-3-540-28348-5
- System control number
-
- (OCoLC)262692110
- (OCoLC)ocn262692110
- (DE-He213)3-540-28349-8
- Label
- Grouping multidimensional data : recent advances in clustering, Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.), (electronic resource)
- Antecedent source
- mixed
- Bibliography note
- Includes bibliographical references (pages 239-264) and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- not applicable
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- The Star Clustering Algorithm for Information Organization -- A Survey of Clustering Data Mining Techniques -- Similarity-Based Text Clustering: A Comparative Study -- Clustering Very Large Data Sets with Principal Direction Divisive Partitioning -- Clustering with Entropy-Like k-Means Algorithms -- Sampling Methods for Building Initial Partitions -- TMG: A MATLAB Toolbox for Generating Term-Document Matrices from Text Collections -- Criterion Functions for Clustering on High-Dimensional Data
- Dimensions
- unknown
- Extent
- 1 online resource (xii, 268 pages)
- File format
- multiple file formats
- Form of item
-
- online
- electronic
- Isbn
- 9783540283485
- Level of compression
- uncompressed
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- illustrations
- Quality assurance targets
- absent
- Reformatting quality
- access
- Specific material designation
- remote
- Stock number
- 978-3-540-28348-5
- System control number
-
- (OCoLC)262692110
- (OCoLC)ocn262692110
- (DE-He213)3-540-28349-8
Subject
- Classification automatique (Statistique)
- Cluster analysis
- Cluster analysis
- Computer Science
- Computer science
- Data mining
- Data mining
- Electronic books
- Electronic books
- Electronic resources
- Exploration de données (Informatique)
- Gegevensmodellering
- Gegevensverzameling
- Information Storage and Retrieval
- Information storage and retrieval systems
- Informatique
- MATHEMATICS -- Probability & Statistics | General
- Math Applications in Computer Science
- Optical pattern recognition
- Pattern Recognition
Genre
Member of
Library Locations
-
African Studies LibraryBorrow it771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US42.350723 -71.108227
-
-
Astronomy LibraryBorrow it725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US42.350259 -71.105717
-
Fineman and Pappas Law LibrariesBorrow it765 Commonwealth Avenue, Boston, MA, 02215, US42.350979 -71.107023
-
Frederick S. Pardee Management LibraryBorrow it595 Commonwealth Avenue, Boston, MA, 02215, US42.349626 -71.099547
-
Howard Gotlieb Archival Research CenterBorrow it771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US42.350723 -71.108227
-
-
Music LibraryBorrow it771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US42.350723 -71.108227
-
Pikering Educational Resources LibraryBorrow it2 Silber Way, Boston, MA, 02215, US42.349804 -71.101425
-
School of Theology LibraryBorrow it745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US42.350494 -71.107235
-
Science & Engineering LibraryBorrow it38 Cummington Mall, Boston, MA, 02215, US42.348472 -71.102257
-
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/portal/Grouping-multidimensional-data--recent-advances/rnnpEyFDfGg/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/portal/Grouping-multidimensional-data--recent-advances/rnnpEyFDfGg/">Grouping multidimensional data : recent advances in clustering, Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.), (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Grouping multidimensional data : recent advances in clustering, Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.), (electronic resource)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/portal/Grouping-multidimensional-data--recent-advances/rnnpEyFDfGg/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/portal/Grouping-multidimensional-data--recent-advances/rnnpEyFDfGg/">Grouping multidimensional data : recent advances in clustering, Jacob Kogan, Charles Nicholas, Marc Teboulle (eds.), (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>