Borrow it
- African Studies Library
- Alumni Medical Library
- Astronomy Library
- Fineman and Pappas Law Libraries
- Frederick S. Pardee Management Library
- Howard Gotlieb Archival Research Center
- Mugar Memorial Library
- Music Library
- Pikering Educational Resources Library
- School of Theology Library
- Science & Engineering Library
- Stone Science Library
The Resource Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993, Paul Utgoff, ML93 chair
Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993, Paul Utgoff, ML93 chair
Resource Information
The item Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993, Paul Utgoff, ML93 chair represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Boston University Libraries.This item is available to borrow from all library branches.
Resource Information
The item Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993, Paul Utgoff, ML93 chair represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Boston University Libraries.
This item is available to borrow from all library branches.
- Language
- eng
- Extent
- v, [7], 348 pages
- Note
- "Tenth International Conference on Machine Learning, held at Amherst, Massachusetts, during June 27-29, 1993"--Pref
- Contents
-
- The Evolution of Genetic Algorithms: Towards Massive Parallelism / Shumeet Baluja -- ELENA: A Bottom-Up Learning Method / Pierre Brezellec and Henry Soldano -- Addressing the Selective Superiority Problem: Automatic Algorithm/Model Class Selection / Carla E. Brodley -- Using Decision Trees to Improve Case-Based Learning / Claire Cardie -- GALOIS: An order-theoretic approach to conceptual clustering / Claudio Carpineto and Giovanni Romano -- Multitask Learning: A Knowledge-Based Source of Inductive Bias / Richard A. Caruana -- Using Qualitative Models to Guide Inductive Learning / Peter Clark and Stan Matwin -- Automating Path Analysis for Building Causal Models from Data / Paul R. Cohen, Adam Carlson, Lisa Ballesteros and Robert St. Amant -- Constructing Hidden Variables in Bayesian Networks via Conceptual Clustering / Dennis Connolly -- Learning Symbolic Rules Using Artificial Neural Networks / Mark W. Craven and Jude W. Shavlik
- Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network / Andrea Pohoreckyj Danyluk and Foster John Provost -- Concept Sharing: A Means to Improve Multi-Concept Learning / Piew Datta and Dennis Kibler -- Discovering Dynamics / Saso Dzeroski and Ljupco Todorovski -- Synthesis of Abstraction Hierarchies for Constraint Satisfaction by Clustering Approximately Equivalent Objects / Thomas Ellman -- SKICAT: A Machine Learning System for Automated Cataloging of Large Scale Sky Surveys / Usama M. Fayyad, Nicholas Weir and S. Djorgovski -- Learning From Entailment: An Application to Propositional Horn Sentences / Michael Frazier and Leonard Pitt -- Efficient Domain-Independent Experimentation / Yolanda Gil -- Learning Search Control Knowledge for Deep Space Network Scheduling / Jonathan Gratch, Steve Chien and Gerald DeJong -- Learning procedures from interactive natural language instructions / Scott B. Huffman and John E. Laird
- Generalization under Implication by Recursive Anti-unification / Peter Idestam-Almquist -- Supervised learning and divide-and-conquer: A statistical approach / Michael I. Jordan and Robert A. Jacobs -- Hierarchical Learning in Stochastic Domains: Preliminary Results / Leslie Pack Kaelbling -- Constraining Learning with Search Control / Jihie Kim and Paul S. Rosenbloom -- Sealing Up Reinforcement Learning for Robot Control / Long-Ji Lin -- Overcoming Incomplete Perception with Utile Distinction Memory / R. Andrew McCallum -- Explanation Based Learning: A Comparison of Symbolic and Neural Network Approaches / Tom M. Mitchell and Sebastian B. Thrun -- Combinatorial optimization in inductive concept learning / Dunja Mladenic -- Decision Theoretic Subsampling for Induction on Large Databases / Ron Musick, Jason Catlett and Stuart Russell -- Learning DNF Via Probabilistic Evidence Combination / Steven W. Norton and Haym Hirsh
- Explaining and Generalizing Diagnostic Decisions / Paul O'Rorke, Yousri El Fattah and Margaret Elliott -- Combining Instance-Based and Model-Based Learning / J.R. Quinlan -- Data Mining of Subjective Agricultural Data / R. Bharat Rao, Thomas B. Voigt and Thomas W. Fermanian -- Lookahead Feature Construction for Learning Hard Concepts / Harish Ragavan and Larry Rendell -- Adaptive NeuroControl: How Black Box and Simple can it be / Jean Michel Renders, Hugues Bersini and Marco Saerens -- An SE-tree based Characterization of the Induction Problem / Ron Rymon -- Density-Adaptive Learning and Forgetting / Marcos Salganicoff -- Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning / Jeffrey C. Schlimmer -- Compiling Bayesian Networks into Neural Networks / Eddie Schwalb -- A Reinforcement Learning Method for Maximizing Undiscounted Rewards / Anton Schwartz -- ATM Scheduling with Queuing Delay Predictions / Daniel B. Schwartz
- Online Learning with Random Representations / Richard S. Sutton and Steven D. Whitehead -- Learning from Queries and Examples with Tree-structured Bias / Prasad Tadepalli -- Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents / Ming Tan -- Better Learners Use Analogical Problem Solving Sparingly / Kurt Van Lehn and Randolph M. Jones
- Isbn
- 9781558603073
- Label
- Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993
- Title
- Machine learning
- Title remainder
- proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993
- Statement of responsibility
- Paul Utgoff, ML93 chair
- Language
- eng
- Cataloging source
- NRC
- Illustrations
- illustrations
- Index
- index present
- LC call number
- Q325.5
- LC item number
- .I57 1993
- Literary form
- non fiction
- http://bibfra.me/vocab/lite/meetingDate
- 1993
- http://bibfra.me/vocab/lite/meetingName
- International Conference on Machine Learning
- Nature of contents
- bibliography
- http://library.link/vocab/relatedWorkOrContributorDate
- 1951-
- http://library.link/vocab/relatedWorkOrContributorName
- Utgoff, Paul E.
- http://library.link/vocab/subjectName
-
- Machine learning
- induction
- réseau neuronal
- multitâche
- apprentissage base-cas
- apprentissage
- algorithme génétique
- apprentissage machine
- Machine learning
- Machine-learning
- Apprentissage automatique
- Label
- Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993, Paul Utgoff, ML93 chair
- Note
- "Tenth International Conference on Machine Learning, held at Amherst, Massachusetts, during June 27-29, 1993"--Pref
- Bibliography note
- Includes bibliographical references and indexes
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- The Evolution of Genetic Algorithms: Towards Massive Parallelism / Shumeet Baluja -- ELENA: A Bottom-Up Learning Method / Pierre Brezellec and Henry Soldano -- Addressing the Selective Superiority Problem: Automatic Algorithm/Model Class Selection / Carla E. Brodley -- Using Decision Trees to Improve Case-Based Learning / Claire Cardie -- GALOIS: An order-theoretic approach to conceptual clustering / Claudio Carpineto and Giovanni Romano -- Multitask Learning: A Knowledge-Based Source of Inductive Bias / Richard A. Caruana -- Using Qualitative Models to Guide Inductive Learning / Peter Clark and Stan Matwin -- Automating Path Analysis for Building Causal Models from Data / Paul R. Cohen, Adam Carlson, Lisa Ballesteros and Robert St. Amant -- Constructing Hidden Variables in Bayesian Networks via Conceptual Clustering / Dennis Connolly -- Learning Symbolic Rules Using Artificial Neural Networks / Mark W. Craven and Jude W. Shavlik
- Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network / Andrea Pohoreckyj Danyluk and Foster John Provost -- Concept Sharing: A Means to Improve Multi-Concept Learning / Piew Datta and Dennis Kibler -- Discovering Dynamics / Saso Dzeroski and Ljupco Todorovski -- Synthesis of Abstraction Hierarchies for Constraint Satisfaction by Clustering Approximately Equivalent Objects / Thomas Ellman -- SKICAT: A Machine Learning System for Automated Cataloging of Large Scale Sky Surveys / Usama M. Fayyad, Nicholas Weir and S. Djorgovski -- Learning From Entailment: An Application to Propositional Horn Sentences / Michael Frazier and Leonard Pitt -- Efficient Domain-Independent Experimentation / Yolanda Gil -- Learning Search Control Knowledge for Deep Space Network Scheduling / Jonathan Gratch, Steve Chien and Gerald DeJong -- Learning procedures from interactive natural language instructions / Scott B. Huffman and John E. Laird
- Generalization under Implication by Recursive Anti-unification / Peter Idestam-Almquist -- Supervised learning and divide-and-conquer: A statistical approach / Michael I. Jordan and Robert A. Jacobs -- Hierarchical Learning in Stochastic Domains: Preliminary Results / Leslie Pack Kaelbling -- Constraining Learning with Search Control / Jihie Kim and Paul S. Rosenbloom -- Sealing Up Reinforcement Learning for Robot Control / Long-Ji Lin -- Overcoming Incomplete Perception with Utile Distinction Memory / R. Andrew McCallum -- Explanation Based Learning: A Comparison of Symbolic and Neural Network Approaches / Tom M. Mitchell and Sebastian B. Thrun -- Combinatorial optimization in inductive concept learning / Dunja Mladenic -- Decision Theoretic Subsampling for Induction on Large Databases / Ron Musick, Jason Catlett and Stuart Russell -- Learning DNF Via Probabilistic Evidence Combination / Steven W. Norton and Haym Hirsh
- Explaining and Generalizing Diagnostic Decisions / Paul O'Rorke, Yousri El Fattah and Margaret Elliott -- Combining Instance-Based and Model-Based Learning / J.R. Quinlan -- Data Mining of Subjective Agricultural Data / R. Bharat Rao, Thomas B. Voigt and Thomas W. Fermanian -- Lookahead Feature Construction for Learning Hard Concepts / Harish Ragavan and Larry Rendell -- Adaptive NeuroControl: How Black Box and Simple can it be / Jean Michel Renders, Hugues Bersini and Marco Saerens -- An SE-tree based Characterization of the Induction Problem / Ron Rymon -- Density-Adaptive Learning and Forgetting / Marcos Salganicoff -- Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning / Jeffrey C. Schlimmer -- Compiling Bayesian Networks into Neural Networks / Eddie Schwalb -- A Reinforcement Learning Method for Maximizing Undiscounted Rewards / Anton Schwartz -- ATM Scheduling with Queuing Delay Predictions / Daniel B. Schwartz
- Online Learning with Random Representations / Richard S. Sutton and Steven D. Whitehead -- Learning from Queries and Examples with Tree-structured Bias / Prasad Tadepalli -- Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents / Ming Tan -- Better Learners Use Analogical Problem Solving Sparingly / Kurt Van Lehn and Randolph M. Jones
- Dimensions
- 28 cm
- Extent
- v, [7], 348 pages
- Isbn
- 9781558603073
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- System control number
-
- (OCoLC)29321956
- (OCoLC)ocm29321956
- Label
- Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993, Paul Utgoff, ML93 chair
- Note
- "Tenth International Conference on Machine Learning, held at Amherst, Massachusetts, during June 27-29, 1993"--Pref
- Bibliography note
- Includes bibliographical references and indexes
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- The Evolution of Genetic Algorithms: Towards Massive Parallelism / Shumeet Baluja -- ELENA: A Bottom-Up Learning Method / Pierre Brezellec and Henry Soldano -- Addressing the Selective Superiority Problem: Automatic Algorithm/Model Class Selection / Carla E. Brodley -- Using Decision Trees to Improve Case-Based Learning / Claire Cardie -- GALOIS: An order-theoretic approach to conceptual clustering / Claudio Carpineto and Giovanni Romano -- Multitask Learning: A Knowledge-Based Source of Inductive Bias / Richard A. Caruana -- Using Qualitative Models to Guide Inductive Learning / Peter Clark and Stan Matwin -- Automating Path Analysis for Building Causal Models from Data / Paul R. Cohen, Adam Carlson, Lisa Ballesteros and Robert St. Amant -- Constructing Hidden Variables in Bayesian Networks via Conceptual Clustering / Dennis Connolly -- Learning Symbolic Rules Using Artificial Neural Networks / Mark W. Craven and Jude W. Shavlik
- Small Disjuncts in Action: Learning to Diagnose Errors in the Local Loop of the Telephone Network / Andrea Pohoreckyj Danyluk and Foster John Provost -- Concept Sharing: A Means to Improve Multi-Concept Learning / Piew Datta and Dennis Kibler -- Discovering Dynamics / Saso Dzeroski and Ljupco Todorovski -- Synthesis of Abstraction Hierarchies for Constraint Satisfaction by Clustering Approximately Equivalent Objects / Thomas Ellman -- SKICAT: A Machine Learning System for Automated Cataloging of Large Scale Sky Surveys / Usama M. Fayyad, Nicholas Weir and S. Djorgovski -- Learning From Entailment: An Application to Propositional Horn Sentences / Michael Frazier and Leonard Pitt -- Efficient Domain-Independent Experimentation / Yolanda Gil -- Learning Search Control Knowledge for Deep Space Network Scheduling / Jonathan Gratch, Steve Chien and Gerald DeJong -- Learning procedures from interactive natural language instructions / Scott B. Huffman and John E. Laird
- Generalization under Implication by Recursive Anti-unification / Peter Idestam-Almquist -- Supervised learning and divide-and-conquer: A statistical approach / Michael I. Jordan and Robert A. Jacobs -- Hierarchical Learning in Stochastic Domains: Preliminary Results / Leslie Pack Kaelbling -- Constraining Learning with Search Control / Jihie Kim and Paul S. Rosenbloom -- Sealing Up Reinforcement Learning for Robot Control / Long-Ji Lin -- Overcoming Incomplete Perception with Utile Distinction Memory / R. Andrew McCallum -- Explanation Based Learning: A Comparison of Symbolic and Neural Network Approaches / Tom M. Mitchell and Sebastian B. Thrun -- Combinatorial optimization in inductive concept learning / Dunja Mladenic -- Decision Theoretic Subsampling for Induction on Large Databases / Ron Musick, Jason Catlett and Stuart Russell -- Learning DNF Via Probabilistic Evidence Combination / Steven W. Norton and Haym Hirsh
- Explaining and Generalizing Diagnostic Decisions / Paul O'Rorke, Yousri El Fattah and Margaret Elliott -- Combining Instance-Based and Model-Based Learning / J.R. Quinlan -- Data Mining of Subjective Agricultural Data / R. Bharat Rao, Thomas B. Voigt and Thomas W. Fermanian -- Lookahead Feature Construction for Learning Hard Concepts / Harish Ragavan and Larry Rendell -- Adaptive NeuroControl: How Black Box and Simple can it be / Jean Michel Renders, Hugues Bersini and Marco Saerens -- An SE-tree based Characterization of the Induction Problem / Ron Rymon -- Density-Adaptive Learning and Forgetting / Marcos Salganicoff -- Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning / Jeffrey C. Schlimmer -- Compiling Bayesian Networks into Neural Networks / Eddie Schwalb -- A Reinforcement Learning Method for Maximizing Undiscounted Rewards / Anton Schwartz -- ATM Scheduling with Queuing Delay Predictions / Daniel B. Schwartz
- Online Learning with Random Representations / Richard S. Sutton and Steven D. Whitehead -- Learning from Queries and Examples with Tree-structured Bias / Prasad Tadepalli -- Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents / Ming Tan -- Better Learners Use Analogical Problem Solving Sparingly / Kurt Van Lehn and Randolph M. Jones
- Dimensions
- 28 cm
- Extent
- v, [7], 348 pages
- Isbn
- 9781558603073
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- System control number
-
- (OCoLC)29321956
- (OCoLC)ocm29321956
Library Locations
-
African Studies LibraryBorrow it771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US42.350723 -71.108227
-
-
Astronomy LibraryBorrow it725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US42.350259 -71.105717
-
Fineman and Pappas Law LibrariesBorrow it765 Commonwealth Avenue, Boston, MA, 02215, US42.350979 -71.107023
-
Frederick S. Pardee Management LibraryBorrow it595 Commonwealth Avenue, Boston, MA, 02215, US42.349626 -71.099547
-
Howard Gotlieb Archival Research CenterBorrow it771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US42.350723 -71.108227
-
-
Music LibraryBorrow it771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US42.350723 -71.108227
-
Pikering Educational Resources LibraryBorrow it2 Silber Way, Boston, MA, 02215, US42.349804 -71.101425
-
School of Theology LibraryBorrow it745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US42.350494 -71.107235
-
Science & Engineering LibraryBorrow it38 Cummington Mall, Boston, MA, 02215, US42.348472 -71.102257
-
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/portal/Machine-learning--proceedings-of-the-tenth/fiDjJXIZ48w/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/portal/Machine-learning--proceedings-of-the-tenth/fiDjJXIZ48w/">Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993, Paul Utgoff, ML93 chair</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993, Paul Utgoff, ML93 chair
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/portal/Machine-learning--proceedings-of-the-tenth/fiDjJXIZ48w/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/portal/Machine-learning--proceedings-of-the-tenth/fiDjJXIZ48w/">Machine learning : proceedings of the tenth international conference, University of Massachusetts, Amherst, June 27-29, 1993, Paul Utgoff, ML93 chair</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>