The Resource Molecular cell biology, James Darnell, Harvey Lodish, David Baltimore

Molecular cell biology, James Darnell, Harvey Lodish, David Baltimore

Label
Molecular cell biology
Title
Molecular cell biology
Statement of responsibility
James Darnell, Harvey Lodish, David Baltimore
Creator
Contributor
Subject
Language
eng
Cataloging source
DNLM/DLC
http://library.link/vocab/creatorName
Darnell, James E
Illustrations
illustrations
Index
index present
LC call number
QH581.2
LC item number
.D37 1990
Literary form
non fiction
Nature of contents
bibliography
NLM call number
QH 581.2
NLM item number
D223m 1990
http://library.link/vocab/relatedWorkOrContributorName
  • Lodish, Harvey F
  • Baltimore, David
http://library.link/vocab/subjectName
  • Cytology
  • Molecular biology
  • Cells
  • Molecular Biology
  • Cytologie
  • Biologie moléculaire
  • Cytology
  • Molecular biology
  • Moleculaire biologie
  • Cytochemie
  • Celbiologie
  • Cytologie
  • Molekularbiologie
  • Zelle
Label
Molecular cell biology, James Darnell, Harvey Lodish, David Baltimore
Link
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Introduction: The history of molecular cell biology. Evolution and the cell theory -- Classical biochemistry and genetics -- The merging of genetics and biochemistry -- The birth of molecular biology -- A modern view of cell structure -- Part I. Molecules, cells, proteins, and experimental techniques: a primer. [Ch. 1] Chemical foundations -- Energy -- Chemical bonds -- Chemical equilibrium -- Ph and the concentration of hydrogen ions -- The direction of chemical reactions -- Activation energy and reaction rate -- [Ch. 2] Molecules in cells proteins -- Enzymes -- Antibodies -- Nucleic acids -- DNA -- Lipids and biomembranes -- Carbohydrates -- The primacy of proteins -- [Ch. 3] Synthesis of proteins and nucleic acids -- Rules for the synthesis of proteins and nucleic acids -- Protein synthesis: the three roles of RNA -- The steps in protein synthesis -- Nucleic acid synthesis -- [Ch. 4] The study of cell organization and subcellular structure -- Prokaryotic and eukaryotic cells -- Light microscopy and cell architecture -- Electron microscopy -- Sorting cells and their parts -- The organelles of the eukaryotic cells -- [Ch. 5] Growing and manipulating cells and viruses -- Types of cell division -- The cell cycle in prokaryotes consists of DNA replication followed immediately by cell division -- Eukaryotic DNA synthesis occurs in a special phase of the cell cycle -- The growth of microorganisms and cells in culture -- Cell fusion: an important technique in somatic-cell genetics -- DNA transfer into eukaryotic cells -- Viruses: structures and function
  • [Ch.6] Manipulating macromolecules -- Radioisotopes: the indispensible modern means of following biological activity -- Determining the size of nucleic acids and proteins -- Examining the sequences of nucleic acids and proteins -- Recombinant DNA: selection and production of specific DNA -- Controlled deletions and base-specific mutagenesis of DNA -- Synthetic peptide and nucleotide sequences: their use in isolating and identifying genes -- Part II. Gene expression, structure, and replication -- [Ch.7] RNA synthesis and gene control in prokaryotes -- Overall strategy of prokaryotic gene control -- Control of transcriptional initiation -- Negative control of transcription: the lactose operon -- Positive control of transcription: the arabinose operon -- Compound control of transcription -- Control of regulatory proteins -- Control of transcriptional termination -- Bacteriophage a infection: alternative physiologic states determined by a complex transcriptional control program -- "Global control" in E. Coli -- Stability of biopolymers in bacterial cells -- [Ch.8] RNA synthesis and processing in eukaryotes -- Relationship of nuclear and cytoplasmic RNA -- Function and structure of RNA polymerases -- Three methods for mapping transcription units -- Synthesis and processing of Pre-rRNA -- Synthesis and processing of 5S rRNA and tRNAs -- Synthesis and processing of mRNAs: general pathway -- Transcription of mRNA genes by RNA polymerase II -- Conversion of hnRNA to mRNA -- Variations on the splicing theme, including self-splicing -- mRNAs may be directed toward specific cytoplasmic sites
  • [Ch.9] The structure of eukaryotic chromosomes -- Morphology and functional elements of eukaryotic chromosomes -- Structure of chromatin -- Biologic definitions of a gene -- Molecular definition of a gene -- [Ch.10] Eukaryotic chromosomes and genes: molecular anatomy -- Major classes of eukaryotic DNA -- Solitary protein-coding genes -- Duplicated protein-coding genes -- Tandemly repeated genes encoding rRNA, tRNA, and histones -- Repetitious DNA fractions -- Simple-sequence DNA -- Intermediate repeat DNA and mobile DNA elements -- Functional rearrangements in chromosomal DNA -- [Ch.11] Gene control and the molecular genetics of development in eukaryotes -- The "purpose" of gene control in unicellular versus multicellular organisms -- Variations in proteins among cell types -- The three components of gene control: signals, levels, and mechanisms -- Signals for gene control -- Experimental demonstration of transcriptional control -- Structure and function of DNA-binding proteins that regulate transcription of protein-coding genes -- Transcriptional control of yeast cell specificity -- Gene control in animal cells -- Control of regulatory-protein activity and possible effects of chromatin structure on gene activity -- Control of transcriptional termination -- Differential processing of pre-mRNA -- Overlapping transcription units: transcriptional control not processing control -- Regulation of ribosomal RNA -- Cytoplasmic control of gene expression
  • [Ch. 12] DNA replication, repair, and recombination -- General features of DNA synthesis and replication -- Initiation and propagation of a DNA chain at a growing fork -- Topoisomerases and superhelicity in DNA -- Assembly of DNA into nucleosomes -- Repair of DNA -- Recombination between homologous DNA sites -- Part III. Cell structure and function -- [Ch. 13] The plasma membrane -- The architecture of lipid membranes -- Membrane proteins -- Principles of membrane organization -- The erythrocyte membrane: cytoskeletal attachment -- Specialized regions of the plasma membrane -- Types of cell junctions -- [Ch. 14] Transport across cell membranes -- Passive transport across the cell membrane -- Ion channels, intracellular ion environment, and membrane electric potential -- Active ion transport and ATP hydrolysis -- Cotransport: symport and antiport -- Transport into prokaryotic cells -- Osmosis, movement of water, and the regulation of cell volume -- The internalization of macromolecules and particles -- Receptor-mediated endocytosis -- Entry of viruses and toxins into cells -- [Ch. 15] Energy conversion: the formation of ATP in mitochondria and bacteria -- Energy metabolism in the cytosol -- Mitochondria and the metabolism of carbohydrates and lipids -- The proton-motive force, ATP generation, and transport of metabolite closed vesicles are required for the generation of ATP -- NADH, electron transport, and proton pumping -- Metabolic regulation
  • [Ch. 16] Photosynthesis -- An overview of photosynthesis in plants -- The light-absorbing steps of photosynthesis -- Molecular analysis of bacterial photosynthesis -- The structure and function of the two plant photosystems: PSI and PSII -- CO2 metabolism during photosynthesis -- [Ch. 17] Plasma-membrane, secretory, and lysosome proteins: biosynthesis and sorting -- The synthesis of membrane lipids -- Sites of organelle- and membrane-protein synthesis -- Overall pathway for the synthesis of secretory and membrane proteins -- The transport of secretory and membrane proteins into or across the ER membrane -- Posttranslational modifications of secretory and membrane proteins in the rough -- Golgi vesicles: sorting and glycosylation of secretory and membrane proteins -- Golgi and post-golgi sorting and processing of secretory and membrane proteins -- [Ch. 18] Organelle biogenesis: the nucleus, chloroplast, and mitochondrion -- Assembly and disassembly of the nuclear membrane -- Protein import into the cell nucleus -- Mitochondrial DNA: structure, expression, and variability Synthesis and localization of mitochondrial proteins -- Chioroplast DNA and biogenesis of plastids -- [Ch. 19] Cell-to-cell signaling: hormones and receptors -- The role of extracellular signals in cellular metabolism -- Identification and purification of cell- surface receptors -- Epinephrine receptors and the activation of adenylate cyclase -- cAMP and regulation of cellular metabolism -- Ca2+ ions, inositol phosphates, and 1,2- diacylglycerol as second messengers -- Insulin and glucagon: hormone regulation of blood glucose levels -- Receptor regulation -- Hormones and cell-to-cell signaling in microorganisms -- Plant hormones and plant growth and differentiation
  • [Ch. 20] Nerve cells and the electric properties of cell membranes -- Neurons, synapses, and nerve circuits -- The action potential and conduction of electric impulses -- Molecular properties of voltage-gated ion channel proteins -- Synapses and impulse transmission -- Synaptic transmission and the nicotinic acetylcholine receptor -- Functions of other neurotransmitters and their receptors -- Memory and neurotransmitters -- Sensory transduction: the visual system -- [Ch. 21] Microtubules and cellular movements -- Structure and diversity of microtubules -- Structural and kinetic polarity of microtubules -- Heterogenity of a- and b-tubulin -- Intracellular transport via microtubules -- Cilia and flagella: structure and movement -- Basal bodies and centrioles: structure and properties -- Function of microtubules in mitosis -- [Ch. 22] Actin, myosin, and intermediate filaments: cell movements and cell shape -- Actin and myosin filaments -- Muscle structure and function -- Actin and myosin in nonmuscle cells -- Intermediate filaments -- [Ch. 23] Multicellularity: cell-cell and cell-matrix interactions -- The extracellular matrix serves many functions -- Collagen: a class of multifunctional fibrous proteins -- Hyaluronic acid and proteoglycans -- Laminin, fibronectin, and other multiadhesive matrix glycoproteins -- Cell-cell adhesion proteins -- Cell and matrix interactions during development -- Cell and matrix interactions during neuron development -- Structure and function of the plant cell wall -- Part IV. The new biology: facing classic questions at the frontier
  • [Ch. 24] Cancer characteristics of tumor cells -- Use of cell cultures in cancer research -- DNA viruses as transforming agents -- RNA-containing retroviruses as transforming agents -- Human tumor viruses -- Chemical carcinogens -- The role of radiation and DNA repair in carcinogenesis -- Oncogenes and their proteins: classification and characteristics -- The role of cellular oncogenes in carcinogenesis -- The multicausal, multistep nature of carcinogenesis -- Human cancer -- [Ch. 25] Immunity -- Overview -- Antibodies and the generation of diversity -- The antigen-independent phase of b-lymphocyte maturation T lymphocytes -- The antigen-dependent phase of the immune response -- [Ch. 26] Evolution of cells -- Prebiotic synthesis -- RNA catalysis: a basis for a precellular genetic system? -- A reconstructive analysis of cell lineages -- Evolution of gene structure: lessons from present-day intron distributions
Dimensions
28 cm
Edition
2nd ed.
Extent
xl, 1105 pages
Isbn
9780716720782
Lccn
89070096
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations (some color)
System control number
  • (OCoLC)20757120
  • (OCoLC)ocm20757120
Label
Molecular cell biology, James Darnell, Harvey Lodish, David Baltimore
Link
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Introduction: The history of molecular cell biology. Evolution and the cell theory -- Classical biochemistry and genetics -- The merging of genetics and biochemistry -- The birth of molecular biology -- A modern view of cell structure -- Part I. Molecules, cells, proteins, and experimental techniques: a primer. [Ch. 1] Chemical foundations -- Energy -- Chemical bonds -- Chemical equilibrium -- Ph and the concentration of hydrogen ions -- The direction of chemical reactions -- Activation energy and reaction rate -- [Ch. 2] Molecules in cells proteins -- Enzymes -- Antibodies -- Nucleic acids -- DNA -- Lipids and biomembranes -- Carbohydrates -- The primacy of proteins -- [Ch. 3] Synthesis of proteins and nucleic acids -- Rules for the synthesis of proteins and nucleic acids -- Protein synthesis: the three roles of RNA -- The steps in protein synthesis -- Nucleic acid synthesis -- [Ch. 4] The study of cell organization and subcellular structure -- Prokaryotic and eukaryotic cells -- Light microscopy and cell architecture -- Electron microscopy -- Sorting cells and their parts -- The organelles of the eukaryotic cells -- [Ch. 5] Growing and manipulating cells and viruses -- Types of cell division -- The cell cycle in prokaryotes consists of DNA replication followed immediately by cell division -- Eukaryotic DNA synthesis occurs in a special phase of the cell cycle -- The growth of microorganisms and cells in culture -- Cell fusion: an important technique in somatic-cell genetics -- DNA transfer into eukaryotic cells -- Viruses: structures and function
  • [Ch.6] Manipulating macromolecules -- Radioisotopes: the indispensible modern means of following biological activity -- Determining the size of nucleic acids and proteins -- Examining the sequences of nucleic acids and proteins -- Recombinant DNA: selection and production of specific DNA -- Controlled deletions and base-specific mutagenesis of DNA -- Synthetic peptide and nucleotide sequences: their use in isolating and identifying genes -- Part II. Gene expression, structure, and replication -- [Ch.7] RNA synthesis and gene control in prokaryotes -- Overall strategy of prokaryotic gene control -- Control of transcriptional initiation -- Negative control of transcription: the lactose operon -- Positive control of transcription: the arabinose operon -- Compound control of transcription -- Control of regulatory proteins -- Control of transcriptional termination -- Bacteriophage a infection: alternative physiologic states determined by a complex transcriptional control program -- "Global control" in E. Coli -- Stability of biopolymers in bacterial cells -- [Ch.8] RNA synthesis and processing in eukaryotes -- Relationship of nuclear and cytoplasmic RNA -- Function and structure of RNA polymerases -- Three methods for mapping transcription units -- Synthesis and processing of Pre-rRNA -- Synthesis and processing of 5S rRNA and tRNAs -- Synthesis and processing of mRNAs: general pathway -- Transcription of mRNA genes by RNA polymerase II -- Conversion of hnRNA to mRNA -- Variations on the splicing theme, including self-splicing -- mRNAs may be directed toward specific cytoplasmic sites
  • [Ch.9] The structure of eukaryotic chromosomes -- Morphology and functional elements of eukaryotic chromosomes -- Structure of chromatin -- Biologic definitions of a gene -- Molecular definition of a gene -- [Ch.10] Eukaryotic chromosomes and genes: molecular anatomy -- Major classes of eukaryotic DNA -- Solitary protein-coding genes -- Duplicated protein-coding genes -- Tandemly repeated genes encoding rRNA, tRNA, and histones -- Repetitious DNA fractions -- Simple-sequence DNA -- Intermediate repeat DNA and mobile DNA elements -- Functional rearrangements in chromosomal DNA -- [Ch.11] Gene control and the molecular genetics of development in eukaryotes -- The "purpose" of gene control in unicellular versus multicellular organisms -- Variations in proteins among cell types -- The three components of gene control: signals, levels, and mechanisms -- Signals for gene control -- Experimental demonstration of transcriptional control -- Structure and function of DNA-binding proteins that regulate transcription of protein-coding genes -- Transcriptional control of yeast cell specificity -- Gene control in animal cells -- Control of regulatory-protein activity and possible effects of chromatin structure on gene activity -- Control of transcriptional termination -- Differential processing of pre-mRNA -- Overlapping transcription units: transcriptional control not processing control -- Regulation of ribosomal RNA -- Cytoplasmic control of gene expression
  • [Ch. 12] DNA replication, repair, and recombination -- General features of DNA synthesis and replication -- Initiation and propagation of a DNA chain at a growing fork -- Topoisomerases and superhelicity in DNA -- Assembly of DNA into nucleosomes -- Repair of DNA -- Recombination between homologous DNA sites -- Part III. Cell structure and function -- [Ch. 13] The plasma membrane -- The architecture of lipid membranes -- Membrane proteins -- Principles of membrane organization -- The erythrocyte membrane: cytoskeletal attachment -- Specialized regions of the plasma membrane -- Types of cell junctions -- [Ch. 14] Transport across cell membranes -- Passive transport across the cell membrane -- Ion channels, intracellular ion environment, and membrane electric potential -- Active ion transport and ATP hydrolysis -- Cotransport: symport and antiport -- Transport into prokaryotic cells -- Osmosis, movement of water, and the regulation of cell volume -- The internalization of macromolecules and particles -- Receptor-mediated endocytosis -- Entry of viruses and toxins into cells -- [Ch. 15] Energy conversion: the formation of ATP in mitochondria and bacteria -- Energy metabolism in the cytosol -- Mitochondria and the metabolism of carbohydrates and lipids -- The proton-motive force, ATP generation, and transport of metabolite closed vesicles are required for the generation of ATP -- NADH, electron transport, and proton pumping -- Metabolic regulation
  • [Ch. 16] Photosynthesis -- An overview of photosynthesis in plants -- The light-absorbing steps of photosynthesis -- Molecular analysis of bacterial photosynthesis -- The structure and function of the two plant photosystems: PSI and PSII -- CO2 metabolism during photosynthesis -- [Ch. 17] Plasma-membrane, secretory, and lysosome proteins: biosynthesis and sorting -- The synthesis of membrane lipids -- Sites of organelle- and membrane-protein synthesis -- Overall pathway for the synthesis of secretory and membrane proteins -- The transport of secretory and membrane proteins into or across the ER membrane -- Posttranslational modifications of secretory and membrane proteins in the rough -- Golgi vesicles: sorting and glycosylation of secretory and membrane proteins -- Golgi and post-golgi sorting and processing of secretory and membrane proteins -- [Ch. 18] Organelle biogenesis: the nucleus, chloroplast, and mitochondrion -- Assembly and disassembly of the nuclear membrane -- Protein import into the cell nucleus -- Mitochondrial DNA: structure, expression, and variability Synthesis and localization of mitochondrial proteins -- Chioroplast DNA and biogenesis of plastids -- [Ch. 19] Cell-to-cell signaling: hormones and receptors -- The role of extracellular signals in cellular metabolism -- Identification and purification of cell- surface receptors -- Epinephrine receptors and the activation of adenylate cyclase -- cAMP and regulation of cellular metabolism -- Ca2+ ions, inositol phosphates, and 1,2- diacylglycerol as second messengers -- Insulin and glucagon: hormone regulation of blood glucose levels -- Receptor regulation -- Hormones and cell-to-cell signaling in microorganisms -- Plant hormones and plant growth and differentiation
  • [Ch. 20] Nerve cells and the electric properties of cell membranes -- Neurons, synapses, and nerve circuits -- The action potential and conduction of electric impulses -- Molecular properties of voltage-gated ion channel proteins -- Synapses and impulse transmission -- Synaptic transmission and the nicotinic acetylcholine receptor -- Functions of other neurotransmitters and their receptors -- Memory and neurotransmitters -- Sensory transduction: the visual system -- [Ch. 21] Microtubules and cellular movements -- Structure and diversity of microtubules -- Structural and kinetic polarity of microtubules -- Heterogenity of a- and b-tubulin -- Intracellular transport via microtubules -- Cilia and flagella: structure and movement -- Basal bodies and centrioles: structure and properties -- Function of microtubules in mitosis -- [Ch. 22] Actin, myosin, and intermediate filaments: cell movements and cell shape -- Actin and myosin filaments -- Muscle structure and function -- Actin and myosin in nonmuscle cells -- Intermediate filaments -- [Ch. 23] Multicellularity: cell-cell and cell-matrix interactions -- The extracellular matrix serves many functions -- Collagen: a class of multifunctional fibrous proteins -- Hyaluronic acid and proteoglycans -- Laminin, fibronectin, and other multiadhesive matrix glycoproteins -- Cell-cell adhesion proteins -- Cell and matrix interactions during development -- Cell and matrix interactions during neuron development -- Structure and function of the plant cell wall -- Part IV. The new biology: facing classic questions at the frontier
  • [Ch. 24] Cancer characteristics of tumor cells -- Use of cell cultures in cancer research -- DNA viruses as transforming agents -- RNA-containing retroviruses as transforming agents -- Human tumor viruses -- Chemical carcinogens -- The role of radiation and DNA repair in carcinogenesis -- Oncogenes and their proteins: classification and characteristics -- The role of cellular oncogenes in carcinogenesis -- The multicausal, multistep nature of carcinogenesis -- Human cancer -- [Ch. 25] Immunity -- Overview -- Antibodies and the generation of diversity -- The antigen-independent phase of b-lymphocyte maturation T lymphocytes -- The antigen-dependent phase of the immune response -- [Ch. 26] Evolution of cells -- Prebiotic synthesis -- RNA catalysis: a basis for a precellular genetic system? -- A reconstructive analysis of cell lineages -- Evolution of gene structure: lessons from present-day intron distributions
Dimensions
28 cm
Edition
2nd ed.
Extent
xl, 1105 pages
Isbn
9780716720782
Lccn
89070096
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations (some color)
System control number
  • (OCoLC)20757120
  • (OCoLC)ocm20757120

Library Locations

  • African Studies LibraryBorrow it
    771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Alumni Medical LibraryBorrow it
    72 East Concord Street, Boston, MA, 02118, US
    42.336388 -71.072393
  • Astronomy LibraryBorrow it
    725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US
    42.350259 -71.105717
  • Fineman and Pappas Law LibrariesBorrow it
    765 Commonwealth Avenue, Boston, MA, 02215, US
    42.350979 -71.107023
  • Frederick S. Pardee Management LibraryBorrow it
    595 Commonwealth Avenue, Boston, MA, 02215, US
    42.349626 -71.099547
  • Howard Gotlieb Archival Research CenterBorrow it
    771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Mugar Memorial LibraryBorrow it
    771 Commonwealth Avenue, Boston, MA, 02215, US
    42.350723 -71.108227
  • Music LibraryBorrow it
    771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Pikering Educational Resources LibraryBorrow it
    2 Silber Way, Boston, MA, 02215, US
    42.349804 -71.101425
  • School of Theology LibraryBorrow it
    745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350494 -71.107235
  • Science & Engineering LibraryBorrow it
    38 Cummington Mall, Boston, MA, 02215, US
    42.348472 -71.102257
  • Stone Science LibraryBorrow it
    675 Commonwealth Avenue, Boston, MA, 02445, US
    42.350103 -71.103784
Processing Feedback ...