The Resource Nanosensors : theory and applications in industry, healthcare, and defense, edited by Teik-Cheng Lim

Nanosensors : theory and applications in industry, healthcare, and defense, edited by Teik-Cheng Lim

Label
Nanosensors : theory and applications in industry, healthcare, and defense
Title
Nanosensors
Title remainder
theory and applications in industry, healthcare, and defense
Statement of responsibility
edited by Teik-Cheng Lim
Contributor
Subject
Language
eng
Summary
"Nanosensors, sensing devices with at least one sensing dimension less than 100nm, have become instrumental for monitoring physical and chemical phenomena, detecting biochemicals in cellular organelles, and measuring nanoscopic particles in industrial processes. This book provides a guide to nanosensors. Inspired by his own experience with nanofiber-based gas sensors, the author explains the principles and applications of nanosensors for industry, healthcare, and defense. Each chapter presents an overview of the specific type of nanosensor and then describes the fundamental science that forms the basis of the sensing mechanism, fabrication techniques, and the specific nanosensor's detection"--
Assigning source
Provided by publisher
Cataloging source
DLC
Illustrations
illustrations
Index
index present
LC call number
T174.7
LC item number
.N3588 2011
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
Lim, Teik-Cheng
http://library.link/vocab/subjectName
  • Nanotechnology
  • Detectors
  • Nanoelectromechanical systems
  • TECHNOLOGY & ENGINEERING
  • TECHNOLOGY & ENGINEERING
  • SCIENCE
  • Detectors
  • Nanoelectromechanical systems
  • Nanotechnology
Label
Nanosensors : theory and applications in industry, healthcare, and defense, edited by Teik-Cheng Lim
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1.3.
  • Relevant Physical Characteristics of Carbon Nanotubes
  • 1.4.
  • Chemical Sensors and MEMS-Based Nanotube Sensors
  • 1.4.1.
  • Individual CNT Chemical Sensors
  • 1.4.2.
  • CNT Network/Film-Based Chemical Sensors
  • 1.4.3.
  • CNT Array-Based Gas Sensors
  • Machine generated contents note:
  • 1.4.4.
  • Metal-Nanoparticle-Modified CNT Sensors
  • 1.4.5.
  • Polymer-Functionalized CNT Chemical Sensors
  • 1.4.6.
  • CNT-Templated Materials for Gas Sensors
  • 1.4.7.
  • MEMS Sensors Using CNTs
  • 1.5.
  • Biosensors, Drug Delivery, and Bioimaging
  • ch. 1
  • 1.5.1.
  • Biosensing Studies with Isolated CNTs
  • 1.5.2.
  • Biosensing Using CNT Composites and Arrays
  • 1.5.3.
  • CNTs for Drug Delivery and Bioimaging Studies
  • 1.6.
  • Conclusions and Outlook
  • References
  • ch. 2
  • Carbon-Nanotube-Based Sensors
  • Carbon-Nanotube-Based Fluidic Shear-Stress Sensors
  • Wen J. Li
  • 2.1.
  • Overview of Carbon Nanotube Sensors
  • B.C. Satishkumar
  • 1.1.
  • Introduction
  • 1.2.
  • Synthesis of Carbon Nanotubes
  • 2.4.
  • Dielectrophoretic Batch Manipulation of CNTs
  • 2.4.1.
  • Theoretical Background
  • 2.4.2.
  • Manipulation of CNTs
  • 2.5.
  • Integrated SWCNT Sensors in Micro-Wind Tunnel for Airflow Shear-Stress Measurement
  • 2.5.1.
  • Experimental Details
  • 2.2.
  • 2.5.1.1.
  • Fabrication Process of the Integrated CNT Sensor Chip
  • 2.5.1.2.
  • Experimental Setup
  • 2.5.2.
  • Results and Discussions
  • 2.5.2.1.
  • Characteristics of SWCNTs
  • 2.5.2.2.
  • Sensor Response Toward Airflow Inside a Micro-Wind Tunnel
  • Types of Shear-Stress Sensors
  • 2.5.3.
  • Summary
  • 2.6.
  • Ultralow-Powered EG-CNT Sensors for Aqueous Shear-Stress Measurement in Microfluidic Systems
  • 2.6.1.
  • Experimental Details
  • 2.6.1.1.
  • Sensor Design and Fabrication
  • 2.6.1.2.
  • Experimental Setup
  • 2.2.1.
  • 2.6.2.
  • Results and Discussions
  • 2.6.2.1.
  • Characteristics of EG-CNTs
  • 2.6.2.2.
  • Sensor Sensitivity
  • 2.6.2.3.
  • Thermal Dissipation Principle
  • Direct Measurement
  • 2.2.2.
  • Indirect Measurement
  • 2.3.
  • Operating Principle of the CNT Sensor Shear-Stress Sensor
  • 2.8.
  • Conclusions
  • Acknowledgments
  • References
  • ch. 3
  • Nanomechanical Cantilever Sensors: Theory and Applications
  • Wenmiao Shu
  • 3.1.
  • Introduction
  • 3.2.
  • 2.6.2.4.
  • Operation Principles
  • 3.3.
  • Preparation of Microcantilever Sensors
  • 3.3.1.
  • Device Fabrication
  • 3.3.2.
  • Surface Functionalization Techniques
  • 3.4.
  • Readout Techniques
  • 3.4.1.
  • Transient Heat Transfer under Nature Convection
  • Optical
  • 3.4.2.
  • Piezoresistive/Piezoelectric
  • 3.4.3.
  • Sensor Arrays
  • 3.5.
  • Biosensing Applications
  • 3.6.
  • Defense Applications
  • 3.6.1.
  • 2.6.2.5.
  • Industry: Gas/Vapor Sensors
  • 3.6.2.
  • Defense: Explosives
  • 3.6.3.
  • Preconcentrator
  • 3.6.4.
  • Theoretical Analysis of Sensitivity
  • 3.7.
  • Conclusions
  • References
  • Dynamic Response under Forced Convection
  • ch. 4
  • Protein Thin Films: Sensing Elements for Sensors
  • Svetlana Erokhina
  • 4.1.
  • Introdcution
  • 4.1.1.
  • Layer-by-Layer Films of Proteins
  • 4.1.1.1.
  • Introduction to the LbL Self-Assembly Technique
  • 2.6.3.
  • Summary
  • 2.7.
  • Comparison of Different Shear-Stress Sensors
  • 4.1.1.6.
  • Sensoric-LbL Micro/Nanocapsules
  • 4.2.
  • Langmuir-Blodgett Films of Proteins
  • 4.2.1.
  • Introduction to Protein LB Films
  • 4.2.2.
  • Monolayers at the Air/Water Interface
  • 4.2.3.
  • Specific Features of the Proteins in LB Films
  • 4.1.1.2.
  • 4.2.4.
  • Fromherz Trough as a Tool for Protein-Containing LB Film Formation
  • 4.2.5.
  • Protein-Containing LB Films for Biosensor Applications
  • 4.2.5.1.
  • Antibody-Containing LB Films
  • 4.2.5.2.
  • Enzyme-Containing LB Films
  • 4.2.5.3.
  • DNA-Containing Monolayers and LB Films
  • General Assembly Procedure
  • 4.3.
  • Conclusions
  • Acknowledgments
  • References
  • ch. 5
  • FRET-Based Nanosensors for Intracellular Glucose Monitoring
  • Kaiming Ye
  • 5.1.
  • Introduction
  • 5.2.
  • 4.1.1.3.
  • Detection of Intracellular Glucose within Living Cells
  • 5.2.1.
  • Nonfluorescent Sensors for Detecting Glucose within Living Cells
  • 5.2.2.
  • Fluorescent Sensors for Nondestructive Measuring of Glucose
  • LbL Protein Films: General Aspects
  • 4.1.1.4.
  • Techniques for the Characterization of LbL Films
  • 4.1.1.5.
  • Protein-Containing LbL Films for Biosensor Applications
  • 6.1.
  • Introduction
  • 6.2.
  • Fundamental Issues
  • 6.2.1.
  • Localized Surface Plasmon Resonance of Noble Metal Nanoparticles
  • 6.2.2.
  • Colloidal Stabilization
  • 6.2.3.
  • Control of Nanoparticles Aggregation and Dispersion in Colorimetric Assays
  • 5.2.3.
  • 6.2.4.
  • Quantification of Nanoparticle Aggregation and Dispersion
  • 6.3.
  • Colorimetric Assays for Various Analyte Species and Biological Processes
  • 6.3.1.
  • Nucleic Acids
  • 6.3.2.
  • Aptamers and Their Targets
  • 6.3.3.
  • DNA Binders -- Drug, Metal Ion, and Protein
  • FRET Nanosensors for Visualization of Glucose within Living Cells
  • 6.3.4.
  • Enzymatic Phosphorylation and Dephosphorylation
  • 6.3.5.
  • Enzymatic Cleavage of Nucleic Acids
  • 6.3.5.1.
  • DNA Cleavage by Endonucleases
  • 6.3.5.2.
  • DNAzyme Cleavage for Metal Sensing
  • 6.4.
  • Conclusion and Future Perspectives
  • 5.3.
  • Acknowledgment
  • References
  • ch. 7
  • Optical Capillary Sensors for Intelligent Classification of Microfluidic Samples
  • Michael L. Korwin-Pawlowski
  • Prospective
  • References
  • ch. 6
  • Noble Metal Nanoparticles as Colorimetric Probes for Biological Analysis
  • Xiaodi Su
  • 7.2.2.1.
  • Filling the Short Section of the Capillary with the Analyzed Liquid
  • 7.2.2.2.
  • Local Heating of the Liquid in the Capillary to Generate a Transient Response
  • 7.2.2.3.
  • Introduction of the Optical Signal to the Short Capillaries Filled with Liquid
  • 7.2.2.4.
  • Signal Detection in Optical Capillary Sensors
  • 7.3.
  • Examination of Liquids Using Optical Capillary Sensors
  • 7.1.
  • 7.3.1.
  • Examination of Chemical Liquids
  • 7.3.2.
  • Examination of Biofuels
  • 7.3.2.1.
  • The Design of the Dedicated Sensor Head
  • 7.3.2.2.
  • Classification of Biofuel Mixtures
  • 7.3.3.
  • Examination of Milk
  • Introduction
  • 7.4.
  • Summary
  • Acknowledgments
  • References
  • ch. 8
  • Future Healthcare: Bioinformatics, Nano-Sensors, and Emerging Innovations
  • Shoumen Palit Austin Datta
  • 8.1.
  • Introduction
  • 8.2.
  • 7.2.
  • Problem Space
  • 8.2.1.
  • Background
  • 8.2.2.
  • Focus
  • 8.3.
  • Solution Space
  • Operating Principles and Construction Aspects of the Optical Capillary Head
  • 7.2.1.
  • General Description of the Sensor System
  • 7.2.2.
  • The Measurement Cycle of the Capillary Sensor
  • 8.4.
  • Innovation Space: Molecular Semantics
  • 8.4.1.
  • Molecular Semantics is about Structure Recognition
  • 8.5.
  • Auxiliary Space
  • 8.5.1.
  • Potential for Massive Growth of Service Industry in Healthcare
  • 8.5.2.
  • Back to Basics Approach is Key to Stimulate Convergence
  • 8.3.1.
  • 8.6.
  • Temporary Conclusion: Abundance of Data Yet Starved for Knowledge?
  • Acknowledgment
  • References
  • Existing Electronic Medical Records Systems
  • 8.3.2.
  • Changing the Dynamics of Medical Data and Information Flow
  • 8.3.3.
  • Data Acquired through Remote Monitoring and Wireless Sensor Network
  • 8.3.4.
  • Innovation in Wireless Remote Monitoring and the Emergence of Nano-Butlers
Dimensions
25 cm
Extent
xii, 321 pages
Isbn
9781439807361
Lccn
2010044865
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
System control number
  • (OCoLC)607983144
  • (OCoLC)ocn607983144
Label
Nanosensors : theory and applications in industry, healthcare, and defense, edited by Teik-Cheng Lim
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1.3.
  • Relevant Physical Characteristics of Carbon Nanotubes
  • 1.4.
  • Chemical Sensors and MEMS-Based Nanotube Sensors
  • 1.4.1.
  • Individual CNT Chemical Sensors
  • 1.4.2.
  • CNT Network/Film-Based Chemical Sensors
  • 1.4.3.
  • CNT Array-Based Gas Sensors
  • Machine generated contents note:
  • 1.4.4.
  • Metal-Nanoparticle-Modified CNT Sensors
  • 1.4.5.
  • Polymer-Functionalized CNT Chemical Sensors
  • 1.4.6.
  • CNT-Templated Materials for Gas Sensors
  • 1.4.7.
  • MEMS Sensors Using CNTs
  • 1.5.
  • Biosensors, Drug Delivery, and Bioimaging
  • ch. 1
  • 1.5.1.
  • Biosensing Studies with Isolated CNTs
  • 1.5.2.
  • Biosensing Using CNT Composites and Arrays
  • 1.5.3.
  • CNTs for Drug Delivery and Bioimaging Studies
  • 1.6.
  • Conclusions and Outlook
  • References
  • ch. 2
  • Carbon-Nanotube-Based Sensors
  • Carbon-Nanotube-Based Fluidic Shear-Stress Sensors
  • Wen J. Li
  • 2.1.
  • Overview of Carbon Nanotube Sensors
  • B.C. Satishkumar
  • 1.1.
  • Introduction
  • 1.2.
  • Synthesis of Carbon Nanotubes
  • 2.4.
  • Dielectrophoretic Batch Manipulation of CNTs
  • 2.4.1.
  • Theoretical Background
  • 2.4.2.
  • Manipulation of CNTs
  • 2.5.
  • Integrated SWCNT Sensors in Micro-Wind Tunnel for Airflow Shear-Stress Measurement
  • 2.5.1.
  • Experimental Details
  • 2.2.
  • 2.5.1.1.
  • Fabrication Process of the Integrated CNT Sensor Chip
  • 2.5.1.2.
  • Experimental Setup
  • 2.5.2.
  • Results and Discussions
  • 2.5.2.1.
  • Characteristics of SWCNTs
  • 2.5.2.2.
  • Sensor Response Toward Airflow Inside a Micro-Wind Tunnel
  • Types of Shear-Stress Sensors
  • 2.5.3.
  • Summary
  • 2.6.
  • Ultralow-Powered EG-CNT Sensors for Aqueous Shear-Stress Measurement in Microfluidic Systems
  • 2.6.1.
  • Experimental Details
  • 2.6.1.1.
  • Sensor Design and Fabrication
  • 2.6.1.2.
  • Experimental Setup
  • 2.2.1.
  • 2.6.2.
  • Results and Discussions
  • 2.6.2.1.
  • Characteristics of EG-CNTs
  • 2.6.2.2.
  • Sensor Sensitivity
  • 2.6.2.3.
  • Thermal Dissipation Principle
  • Direct Measurement
  • 2.2.2.
  • Indirect Measurement
  • 2.3.
  • Operating Principle of the CNT Sensor Shear-Stress Sensor
  • 2.8.
  • Conclusions
  • Acknowledgments
  • References
  • ch. 3
  • Nanomechanical Cantilever Sensors: Theory and Applications
  • Wenmiao Shu
  • 3.1.
  • Introduction
  • 3.2.
  • 2.6.2.4.
  • Operation Principles
  • 3.3.
  • Preparation of Microcantilever Sensors
  • 3.3.1.
  • Device Fabrication
  • 3.3.2.
  • Surface Functionalization Techniques
  • 3.4.
  • Readout Techniques
  • 3.4.1.
  • Transient Heat Transfer under Nature Convection
  • Optical
  • 3.4.2.
  • Piezoresistive/Piezoelectric
  • 3.4.3.
  • Sensor Arrays
  • 3.5.
  • Biosensing Applications
  • 3.6.
  • Defense Applications
  • 3.6.1.
  • 2.6.2.5.
  • Industry: Gas/Vapor Sensors
  • 3.6.2.
  • Defense: Explosives
  • 3.6.3.
  • Preconcentrator
  • 3.6.4.
  • Theoretical Analysis of Sensitivity
  • 3.7.
  • Conclusions
  • References
  • Dynamic Response under Forced Convection
  • ch. 4
  • Protein Thin Films: Sensing Elements for Sensors
  • Svetlana Erokhina
  • 4.1.
  • Introdcution
  • 4.1.1.
  • Layer-by-Layer Films of Proteins
  • 4.1.1.1.
  • Introduction to the LbL Self-Assembly Technique
  • 2.6.3.
  • Summary
  • 2.7.
  • Comparison of Different Shear-Stress Sensors
  • 4.1.1.6.
  • Sensoric-LbL Micro/Nanocapsules
  • 4.2.
  • Langmuir-Blodgett Films of Proteins
  • 4.2.1.
  • Introduction to Protein LB Films
  • 4.2.2.
  • Monolayers at the Air/Water Interface
  • 4.2.3.
  • Specific Features of the Proteins in LB Films
  • 4.1.1.2.
  • 4.2.4.
  • Fromherz Trough as a Tool for Protein-Containing LB Film Formation
  • 4.2.5.
  • Protein-Containing LB Films for Biosensor Applications
  • 4.2.5.1.
  • Antibody-Containing LB Films
  • 4.2.5.2.
  • Enzyme-Containing LB Films
  • 4.2.5.3.
  • DNA-Containing Monolayers and LB Films
  • General Assembly Procedure
  • 4.3.
  • Conclusions
  • Acknowledgments
  • References
  • ch. 5
  • FRET-Based Nanosensors for Intracellular Glucose Monitoring
  • Kaiming Ye
  • 5.1.
  • Introduction
  • 5.2.
  • 4.1.1.3.
  • Detection of Intracellular Glucose within Living Cells
  • 5.2.1.
  • Nonfluorescent Sensors for Detecting Glucose within Living Cells
  • 5.2.2.
  • Fluorescent Sensors for Nondestructive Measuring of Glucose
  • LbL Protein Films: General Aspects
  • 4.1.1.4.
  • Techniques for the Characterization of LbL Films
  • 4.1.1.5.
  • Protein-Containing LbL Films for Biosensor Applications
  • 6.1.
  • Introduction
  • 6.2.
  • Fundamental Issues
  • 6.2.1.
  • Localized Surface Plasmon Resonance of Noble Metal Nanoparticles
  • 6.2.2.
  • Colloidal Stabilization
  • 6.2.3.
  • Control of Nanoparticles Aggregation and Dispersion in Colorimetric Assays
  • 5.2.3.
  • 6.2.4.
  • Quantification of Nanoparticle Aggregation and Dispersion
  • 6.3.
  • Colorimetric Assays for Various Analyte Species and Biological Processes
  • 6.3.1.
  • Nucleic Acids
  • 6.3.2.
  • Aptamers and Their Targets
  • 6.3.3.
  • DNA Binders -- Drug, Metal Ion, and Protein
  • FRET Nanosensors for Visualization of Glucose within Living Cells
  • 6.3.4.
  • Enzymatic Phosphorylation and Dephosphorylation
  • 6.3.5.
  • Enzymatic Cleavage of Nucleic Acids
  • 6.3.5.1.
  • DNA Cleavage by Endonucleases
  • 6.3.5.2.
  • DNAzyme Cleavage for Metal Sensing
  • 6.4.
  • Conclusion and Future Perspectives
  • 5.3.
  • Acknowledgment
  • References
  • ch. 7
  • Optical Capillary Sensors for Intelligent Classification of Microfluidic Samples
  • Michael L. Korwin-Pawlowski
  • Prospective
  • References
  • ch. 6
  • Noble Metal Nanoparticles as Colorimetric Probes for Biological Analysis
  • Xiaodi Su
  • 7.2.2.1.
  • Filling the Short Section of the Capillary with the Analyzed Liquid
  • 7.2.2.2.
  • Local Heating of the Liquid in the Capillary to Generate a Transient Response
  • 7.2.2.3.
  • Introduction of the Optical Signal to the Short Capillaries Filled with Liquid
  • 7.2.2.4.
  • Signal Detection in Optical Capillary Sensors
  • 7.3.
  • Examination of Liquids Using Optical Capillary Sensors
  • 7.1.
  • 7.3.1.
  • Examination of Chemical Liquids
  • 7.3.2.
  • Examination of Biofuels
  • 7.3.2.1.
  • The Design of the Dedicated Sensor Head
  • 7.3.2.2.
  • Classification of Biofuel Mixtures
  • 7.3.3.
  • Examination of Milk
  • Introduction
  • 7.4.
  • Summary
  • Acknowledgments
  • References
  • ch. 8
  • Future Healthcare: Bioinformatics, Nano-Sensors, and Emerging Innovations
  • Shoumen Palit Austin Datta
  • 8.1.
  • Introduction
  • 8.2.
  • 7.2.
  • Problem Space
  • 8.2.1.
  • Background
  • 8.2.2.
  • Focus
  • 8.3.
  • Solution Space
  • Operating Principles and Construction Aspects of the Optical Capillary Head
  • 7.2.1.
  • General Description of the Sensor System
  • 7.2.2.
  • The Measurement Cycle of the Capillary Sensor
  • 8.4.
  • Innovation Space: Molecular Semantics
  • 8.4.1.
  • Molecular Semantics is about Structure Recognition
  • 8.5.
  • Auxiliary Space
  • 8.5.1.
  • Potential for Massive Growth of Service Industry in Healthcare
  • 8.5.2.
  • Back to Basics Approach is Key to Stimulate Convergence
  • 8.3.1.
  • 8.6.
  • Temporary Conclusion: Abundance of Data Yet Starved for Knowledge?
  • Acknowledgment
  • References
  • Existing Electronic Medical Records Systems
  • 8.3.2.
  • Changing the Dynamics of Medical Data and Information Flow
  • 8.3.3.
  • Data Acquired through Remote Monitoring and Wireless Sensor Network
  • 8.3.4.
  • Innovation in Wireless Remote Monitoring and the Emergence of Nano-Butlers
Dimensions
25 cm
Extent
xii, 321 pages
Isbn
9781439807361
Lccn
2010044865
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations
System control number
  • (OCoLC)607983144
  • (OCoLC)ocn607983144

Library Locations

  • African Studies LibraryBorrow it
    771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Alumni Medical LibraryBorrow it
    72 East Concord Street, Boston, MA, 02118, US
    42.336388 -71.072393
  • Astronomy LibraryBorrow it
    725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US
    42.350259 -71.105717
  • Fineman and Pappas Law LibrariesBorrow it
    765 Commonwealth Avenue, Boston, MA, 02215, US
    42.350979 -71.107023
  • Frederick S. Pardee Management LibraryBorrow it
    595 Commonwealth Avenue, Boston, MA, 02215, US
    42.349626 -71.099547
  • Howard Gotlieb Archival Research CenterBorrow it
    771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Mugar Memorial LibraryBorrow it
    771 Commonwealth Avenue, Boston, MA, 02215, US
    42.350723 -71.108227
  • Music LibraryBorrow it
    771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Pikering Educational Resources LibraryBorrow it
    2 Silber Way, Boston, MA, 02215, US
    42.349804 -71.101425
  • School of Theology LibraryBorrow it
    745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350494 -71.107235
  • Science & Engineering LibraryBorrow it
    38 Cummington Mall, Boston, MA, 02215, US
    42.348472 -71.102257
  • Stone Science LibraryBorrow it
    675 Commonwealth Avenue, Boston, MA, 02445, US
    42.350103 -71.103784
Processing Feedback ...