The Resource Nanotechnology and energy : science, promises and limits, [editors], Jochen Lambauer, Ulrich Fahl, Alfred Voß

Nanotechnology and energy : science, promises and limits, [editors], Jochen Lambauer, Ulrich Fahl, Alfred Voß

Label
Nanotechnology and energy : science, promises and limits
Title
Nanotechnology and energy
Title remainder
science, promises and limits
Statement of responsibility
[editors], Jochen Lambauer, Ulrich Fahl, Alfred Voß
Contributor
Subject
Language
eng
Summary
"This book gives an overview of nanotechnological applications within the value chain of the energy sector and evaluates selected applications and their direct and indirect impacts on the energy sector. It presents selected nanotechnological applications that influence the energy economy significantly. Furthermore, the authors give a comprehensive description of the impacts and outcomes of selected nanotechnological applications on energy consumption, energy sources, energy supply, and the energy industry in Germany and show the potential of these applications for energy savings, improvement in energy efficiency, and the reduction of emissions until 2030."--Publisher
Cataloging source
BTCTA
Illustrations
illustrations
Index
index present
LC call number
TJ163.2
LC item number
.N36 2013
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1959-
http://library.link/vocab/relatedWorkOrContributorName
  • Lambauer, Jochen
  • Fahl, Ulrich
  • Voss, Alfred
http://library.link/vocab/subjectName
  • Power resources
  • Nanotechnology
  • Nanotechnologies
  • Innovations technologiques
  • Technologie énergétique
  • Industrie énergétique
  • Nanotechnology
  • Power resources
  • Nanotechnologie
  • Technische Innovation
Label
Nanotechnology and energy : science, promises and limits, [editors], Jochen Lambauer, Ulrich Fahl, Alfred Voß
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Demographic and Economic Development
  • 2.5.5.
  • Attitudes Towards Nanotechnologies in the Energy Sector
  • 2.5.6.
  • Requirements for Consumer Communication
  • 2.5.7.
  • Conclusions: Recommendations for Communication Strategies and Dialogue Concepts
  • 3.
  • Examples for Nanotechnological Applications in the Energy Sector
  • 3.1.
  • Aerogels: Porous Sol-Gel-Derived Solids for Applications in Energy Technologies
  • 1.1.2.
  • Dr. Gudrun Reichenauer
  • 3.1.1.
  • Aerogels-Synthesis and Properties
  • 3.1.1.1.
  • Synthesis
  • 3.1.1.2.
  • Structural properties
  • 3.1.2.
  • Properties Meeting Applications
  • 3.1.2.1.
  • Development of Prices for Fossil Energy Sources
  • Thermal insulation
  • 3.1.2.2.
  • Components for energy storage
  • 3.1.2.3.
  • Catalysts supports
  • 3.1.2.4.
  • Other energy-related fields of application
  • 3.1.3.
  • Problems to be Solved for a Broad Introduction of Aerogels in Energy-Related Applications
  • 3.1.4.
  • 1.1.3.
  • Conclusions
  • 3.2.
  • Energy Sources and Conversion
  • 3.2.1.
  • Dye Solar Cells
  • Dr. Claus Lang-Koetz, Dr. Andreas Hinsch, Dr. Severin Beucker
  • 3.2.1.1.
  • DSC technology and its application
  • 3.2.1.2.
  • Characteristics of DSC modules
  • Primary Energy Consumption
  • 3.2.1.3.
  • Manufacturing steps for DSC modules
  • 3.2.1.4.
  • Industrial production for DSC modules
  • 3.2.1.5.
  • Application scenarios for future DSC products
  • 3.2.1.6.
  • Environmental impact
  • 3.2.1.7.
  • Conclusions and outlook
  • 1.1.4.
  • 3.2.2.
  • Nanoscale Thermoelectrics -- a Concept for Higher Energy Efficiency?
  • Dr. Harald Böttner, Jan König
  • 3.2.2.1.
  • Introduction
  • 3.2.2.2.
  • Initial concepts of nanoscale thermoelectrics
  • 3.2.2.3.
  • Current concepts of nanoscale thermoelectrics
  • 3.2.2.4.
  • Electricity Generation
  • Nanocomposite bulk materials
  • 3.2.2.5.
  • Summary and outlook
  • 3.2.3.
  • Nanostructured Ceramic Membranes for Carbon Capture and Storage
  • Dr. Martin Bram, Dr. Tim van Gestel, Dr. Wilhelm Albert Meulenberg, Prof. Dr. Detlev Stöver
  • 3.2.3.1.
  • Requirements of membranes for gas separation in post- and pre-combustion power plants
  • 3.2.3.2.
  • Gas separation with microporous ceramic membranes
  • 1.1.5.
  • 3.2.3.3.
  • Membrane materials
  • 3.2.3.4.
  • Performance of microporous ceramic membranes
  • 3.2.3.5.
  • Summary and conclusion
  • 3.3.
  • Energy Storage and Distribution
  • 3.3.1.
  • Materials for Energy Storage
  • Final Energy Consumption
  • Dr. Wiebke Lohstroh
  • 3.3.1.1.
  • Materials for hydrogen storage
  • 3.3.1.2.
  • Physiorption materials
  • 3.3.1.3.
  • Chemisorption materials
  • 3.3.1.4.
  • Materials for energy storage in batteries
  • 3.3.1.5.
  • 1.1.6.
  • 'New' battery materials
  • 3.3.1.6.
  • Conclusions
  • 3.4.
  • Energy Use
  • 3.4.1.
  • Nanotechnology in Construction
  • Dr. Wenzhong Zhu
  • 3.4.1.1.
  • General development
  • Notes on the Contributors
  • Energy Productivity and Energy Intensity
  • 3.4.1.2.
  • Application areas
  • 3.4.1.3.
  • Future prospect
  • 3.4.2.
  • Active Windows for Daylight-Guiding Applications
  • Andreas Jäkel, Qingdang Li, Jörg Clobes, Volker Viereck, Prof. Dr. Hartmut Hillmer
  • 3.4.2.1.
  • Introduction and basics
  • 3.4.2.2.
  • 1.1.7.
  • Complete active window
  • 3.4.2.3.
  • Regulation concepts for active windows
  • 3.4.2.4.
  • Production of micromirror arrays
  • 3.4.3.
  • Energy Efficiency Potential of Nanotechnology in Production Processes
  • Dr. Karl-Heinz Haas
  • 3.4.3.1.
  • Introduction
  • Emissions
  • 3.4.3.2.
  • Types and properties of nanoscaled materials
  • 3.4.3.3.
  • Production processes of nanomaterials
  • 3.4.3.4.
  • Nanotechnologies in production processes
  • 3.4.3.5.
  • The vision of molecular manufacturing
  • 3.4.3.6.
  • Conclusion, summary, and outlook
  • 1.2.
  • 4.
  • Potential Analysis and Assessment of the Impact of Nanotechnology on the Energy Sector Until 2030
  • 4.1.
  • Methodological Approach
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.2.
  • Environmental Impact and Energy Demand of Nanotechnology
  • Michael Steinfeldt
  • 4.2.1.
  • Environmental Reliefs Potentials of Nanotechnology
  • Nanotechnology and Energy
  • 4.2.2.
  • Evaluation of Specific Application Contexts: Life Cycle Assessment
  • 4.2.3.
  • Evaluation of Specific Manufactured Nanoparticles
  • 4.3.
  • Potentials of Nanotechnology for Improvements in Energy Efficiency and Emission Reduction
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.3.1.
  • Energy Sources and Conversion
  • 4.3.1.1.
  • 2.
  • Solar heat and photovoltaics
  • 4.3.1.2.
  • Fuel cells
  • 4.3.1.3.
  • Fuel additives
  • 4.3.1.4.
  • Nanostructured membranes
  • 4.3.1.5.
  • Thermoelectric generators
  • 4.3.2.
  • Principles of Nanotechnology
  • Energy Storage and Distribution
  • 4.3.3.
  • Energy Use
  • 4.3.3.1.
  • LED and OLED in illumination
  • 4.3.3.2.
  • New display technologies
  • 4.3.3.3.
  • Ultra-high-performance concrete
  • 4.3.3.4.
  • 2.1.
  • Insulation with vacuum-insulation panels
  • 4.3.3.5.
  • Polycarbonates for automotive glazing
  • 4.3.3.6.
  • Nano-lacquers
  • 4.3.3.7.
  • Nanocatalysts
  • 4.3.3.8.
  • Nanoparticles in synthetic production
  • 4.3.3.9.
  • Definition and Classification
  • Nanpoarticles in tyre compounds
  • 4.3.3.10.
  • Nano-based coatings to reduce friction
  • 4.3.4.
  • Theoretical Potentials of Nanotechnology
  • 4.4.
  • Scenario and Sensitivity Analyses for Impacts of Nanotechnological Applications
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.4.1.
  • Energy Sources and Conversion
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.4.1.1.
  • Solar heat and photovoltaics
  • 4.4.1.2.
  • Fuel cells
  • 4.4.1.3.
  • Fuel additives
  • 4.4.1.4.
  • Nano-based membranes for carbon capture and storage
  • 4.4.1.5.
  • Thermoelectric generators
  • Foreword
  • 2.2.
  • 4.4.2.
  • Energy Storage and Distribution
  • 4.4.3.
  • Energy Use
  • 4.4.3.1.
  • LED and OLED in illumination
  • 4.4.3.2.
  • New display technologies
  • 4.4.3.3.
  • Ultra-high-performance concrete
  • Scientific and Technical Background
  • 4.4.3.4.
  • Insulation with vacuum-insulation panels
  • 4.4.3.5.
  • Polycarbonates for automotive glazing
  • 4.4.3.6.
  • Nano-lacquers
  • 4.4.3.7.
  • Nanocatalysts for styrene manufacturing
  • 4.4.3.8.
  • Nanoparticles in synthetic production
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.4.3.9.
  • Nanoparticles in tyre compounds
  • 4.4.3.10.
  • Nano-based coatings to reduce friction
  • 4.5.
  • Comprehensive Subsumption of Nanotechnology in the Energy Sector
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • Index
  • 2.2.1.
  • Nanomaterials
  • 2.2.1.1.
  • Point-shaped structures
  • 2.2.1.2.
  • Line-shaped structures
  • 2.2.1.3.
  • 1.
  • Layer structures
  • 2.2.1.4.
  • Pore structures
  • 2.2.1.5.
  • Complex structures
  • 2.2.2.
  • Top-Down and Bottom-Up Strategy
  • 2.2.3.
  • Tools and Production Processes
  • 2.2.3.1.
  • Challenges in the Energy Sector and Future Role of Nanotechnology
  • Vapour deposition
  • 2.2.3.2.
  • Manufacturing from liquid or dissolved raw materials
  • 2.2.3.3.
  • Manufacturing from solid raw materials
  • 2.2.3.4.
  • Lithography
  • 2.2.3.5.
  • Self-organisation
  • 2.2.3.6.
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • Nanoanalytics
  • 2.3.
  • Innovation and Economic Potential
  • Dr. Wolfgang Luther
  • 2.3.1.
  • Nanotechnology as a Cross-Cutting Innovation Field
  • 2.3.2.
  • Economic Relevance of Nanotechnology
  • 2.3.3.
  • Nanotechnology Companies in the Value-Added Chain
  • 1.1.
  • 2.4.
  • Risk and Safety Issues
  • Niels Boeing
  • 2.4.1.
  • The Image of Nanotechnology: Three Phases
  • 2.4.1.1.
  • Pre-2000: the futuristic phase
  • 2.4.1.2.
  • 2000-2006: the nanomarkets phase
  • 2.4.1.3.
  • The Energy Sector in Germany and Its Future, Challenges
  • Since 2006: the sceptical phase
  • 2.4.2.
  • A Systematic Approach to Nanotechnology Risks
  • 2.4.2.1.
  • Primary nanorisks: impacts on health and the environment
  • 2.4.2.2.
  • Secondary nanorisks: impacts on society and the economy
  • 2.4.3.
  • Conclusion
  • 2.5.
  • 1.1.1.
  • Public Perception of Nanotechnologies: Challenges and Recommendations for Communication Strategies and Dialogue Concepts
  • Dr. Antje Grobe, Nico Kreinberger
  • 2.5.1.
  • Introduction
  • 2.5.2.
  • Psychological, Social, and Cultural Factors of Risk Perception
  • 2.5.3.
  • Public Perception of Nanotechnologies: an International Comparison
  • 2.5.4.
  • Consumer's Perception of Nanotechnologies in German Language Areas
Dimensions
24 cm
Extent
xxiii, 349, [28] pages
Isbn
9789814310819
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations (some color)
System control number
(OCoLC)731925174
Label
Nanotechnology and energy : science, promises and limits, [editors], Jochen Lambauer, Ulrich Fahl, Alfred Voß
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Demographic and Economic Development
  • 2.5.5.
  • Attitudes Towards Nanotechnologies in the Energy Sector
  • 2.5.6.
  • Requirements for Consumer Communication
  • 2.5.7.
  • Conclusions: Recommendations for Communication Strategies and Dialogue Concepts
  • 3.
  • Examples for Nanotechnological Applications in the Energy Sector
  • 3.1.
  • Aerogels: Porous Sol-Gel-Derived Solids for Applications in Energy Technologies
  • 1.1.2.
  • Dr. Gudrun Reichenauer
  • 3.1.1.
  • Aerogels-Synthesis and Properties
  • 3.1.1.1.
  • Synthesis
  • 3.1.1.2.
  • Structural properties
  • 3.1.2.
  • Properties Meeting Applications
  • 3.1.2.1.
  • Development of Prices for Fossil Energy Sources
  • Thermal insulation
  • 3.1.2.2.
  • Components for energy storage
  • 3.1.2.3.
  • Catalysts supports
  • 3.1.2.4.
  • Other energy-related fields of application
  • 3.1.3.
  • Problems to be Solved for a Broad Introduction of Aerogels in Energy-Related Applications
  • 3.1.4.
  • 1.1.3.
  • Conclusions
  • 3.2.
  • Energy Sources and Conversion
  • 3.2.1.
  • Dye Solar Cells
  • Dr. Claus Lang-Koetz, Dr. Andreas Hinsch, Dr. Severin Beucker
  • 3.2.1.1.
  • DSC technology and its application
  • 3.2.1.2.
  • Characteristics of DSC modules
  • Primary Energy Consumption
  • 3.2.1.3.
  • Manufacturing steps for DSC modules
  • 3.2.1.4.
  • Industrial production for DSC modules
  • 3.2.1.5.
  • Application scenarios for future DSC products
  • 3.2.1.6.
  • Environmental impact
  • 3.2.1.7.
  • Conclusions and outlook
  • 1.1.4.
  • 3.2.2.
  • Nanoscale Thermoelectrics -- a Concept for Higher Energy Efficiency?
  • Dr. Harald Böttner, Jan König
  • 3.2.2.1.
  • Introduction
  • 3.2.2.2.
  • Initial concepts of nanoscale thermoelectrics
  • 3.2.2.3.
  • Current concepts of nanoscale thermoelectrics
  • 3.2.2.4.
  • Electricity Generation
  • Nanocomposite bulk materials
  • 3.2.2.5.
  • Summary and outlook
  • 3.2.3.
  • Nanostructured Ceramic Membranes for Carbon Capture and Storage
  • Dr. Martin Bram, Dr. Tim van Gestel, Dr. Wilhelm Albert Meulenberg, Prof. Dr. Detlev Stöver
  • 3.2.3.1.
  • Requirements of membranes for gas separation in post- and pre-combustion power plants
  • 3.2.3.2.
  • Gas separation with microporous ceramic membranes
  • 1.1.5.
  • 3.2.3.3.
  • Membrane materials
  • 3.2.3.4.
  • Performance of microporous ceramic membranes
  • 3.2.3.5.
  • Summary and conclusion
  • 3.3.
  • Energy Storage and Distribution
  • 3.3.1.
  • Materials for Energy Storage
  • Final Energy Consumption
  • Dr. Wiebke Lohstroh
  • 3.3.1.1.
  • Materials for hydrogen storage
  • 3.3.1.2.
  • Physiorption materials
  • 3.3.1.3.
  • Chemisorption materials
  • 3.3.1.4.
  • Materials for energy storage in batteries
  • 3.3.1.5.
  • 1.1.6.
  • 'New' battery materials
  • 3.3.1.6.
  • Conclusions
  • 3.4.
  • Energy Use
  • 3.4.1.
  • Nanotechnology in Construction
  • Dr. Wenzhong Zhu
  • 3.4.1.1.
  • General development
  • Notes on the Contributors
  • Energy Productivity and Energy Intensity
  • 3.4.1.2.
  • Application areas
  • 3.4.1.3.
  • Future prospect
  • 3.4.2.
  • Active Windows for Daylight-Guiding Applications
  • Andreas Jäkel, Qingdang Li, Jörg Clobes, Volker Viereck, Prof. Dr. Hartmut Hillmer
  • 3.4.2.1.
  • Introduction and basics
  • 3.4.2.2.
  • 1.1.7.
  • Complete active window
  • 3.4.2.3.
  • Regulation concepts for active windows
  • 3.4.2.4.
  • Production of micromirror arrays
  • 3.4.3.
  • Energy Efficiency Potential of Nanotechnology in Production Processes
  • Dr. Karl-Heinz Haas
  • 3.4.3.1.
  • Introduction
  • Emissions
  • 3.4.3.2.
  • Types and properties of nanoscaled materials
  • 3.4.3.3.
  • Production processes of nanomaterials
  • 3.4.3.4.
  • Nanotechnologies in production processes
  • 3.4.3.5.
  • The vision of molecular manufacturing
  • 3.4.3.6.
  • Conclusion, summary, and outlook
  • 1.2.
  • 4.
  • Potential Analysis and Assessment of the Impact of Nanotechnology on the Energy Sector Until 2030
  • 4.1.
  • Methodological Approach
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.2.
  • Environmental Impact and Energy Demand of Nanotechnology
  • Michael Steinfeldt
  • 4.2.1.
  • Environmental Reliefs Potentials of Nanotechnology
  • Nanotechnology and Energy
  • 4.2.2.
  • Evaluation of Specific Application Contexts: Life Cycle Assessment
  • 4.2.3.
  • Evaluation of Specific Manufactured Nanoparticles
  • 4.3.
  • Potentials of Nanotechnology for Improvements in Energy Efficiency and Emission Reduction
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.3.1.
  • Energy Sources and Conversion
  • 4.3.1.1.
  • 2.
  • Solar heat and photovoltaics
  • 4.3.1.2.
  • Fuel cells
  • 4.3.1.3.
  • Fuel additives
  • 4.3.1.4.
  • Nanostructured membranes
  • 4.3.1.5.
  • Thermoelectric generators
  • 4.3.2.
  • Principles of Nanotechnology
  • Energy Storage and Distribution
  • 4.3.3.
  • Energy Use
  • 4.3.3.1.
  • LED and OLED in illumination
  • 4.3.3.2.
  • New display technologies
  • 4.3.3.3.
  • Ultra-high-performance concrete
  • 4.3.3.4.
  • 2.1.
  • Insulation with vacuum-insulation panels
  • 4.3.3.5.
  • Polycarbonates for automotive glazing
  • 4.3.3.6.
  • Nano-lacquers
  • 4.3.3.7.
  • Nanocatalysts
  • 4.3.3.8.
  • Nanoparticles in synthetic production
  • 4.3.3.9.
  • Definition and Classification
  • Nanpoarticles in tyre compounds
  • 4.3.3.10.
  • Nano-based coatings to reduce friction
  • 4.3.4.
  • Theoretical Potentials of Nanotechnology
  • 4.4.
  • Scenario and Sensitivity Analyses for Impacts of Nanotechnological Applications
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.4.1.
  • Energy Sources and Conversion
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.4.1.1.
  • Solar heat and photovoltaics
  • 4.4.1.2.
  • Fuel cells
  • 4.4.1.3.
  • Fuel additives
  • 4.4.1.4.
  • Nano-based membranes for carbon capture and storage
  • 4.4.1.5.
  • Thermoelectric generators
  • Foreword
  • 2.2.
  • 4.4.2.
  • Energy Storage and Distribution
  • 4.4.3.
  • Energy Use
  • 4.4.3.1.
  • LED and OLED in illumination
  • 4.4.3.2.
  • New display technologies
  • 4.4.3.3.
  • Ultra-high-performance concrete
  • Scientific and Technical Background
  • 4.4.3.4.
  • Insulation with vacuum-insulation panels
  • 4.4.3.5.
  • Polycarbonates for automotive glazing
  • 4.4.3.6.
  • Nano-lacquers
  • 4.4.3.7.
  • Nanocatalysts for styrene manufacturing
  • 4.4.3.8.
  • Nanoparticles in synthetic production
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • 4.4.3.9.
  • Nanoparticles in tyre compounds
  • 4.4.3.10.
  • Nano-based coatings to reduce friction
  • 4.5.
  • Comprehensive Subsumption of Nanotechnology in the Energy Sector
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • Index
  • 2.2.1.
  • Nanomaterials
  • 2.2.1.1.
  • Point-shaped structures
  • 2.2.1.2.
  • Line-shaped structures
  • 2.2.1.3.
  • 1.
  • Layer structures
  • 2.2.1.4.
  • Pore structures
  • 2.2.1.5.
  • Complex structures
  • 2.2.2.
  • Top-Down and Bottom-Up Strategy
  • 2.2.3.
  • Tools and Production Processes
  • 2.2.3.1.
  • Challenges in the Energy Sector and Future Role of Nanotechnology
  • Vapour deposition
  • 2.2.3.2.
  • Manufacturing from liquid or dissolved raw materials
  • 2.2.3.3.
  • Manufacturing from solid raw materials
  • 2.2.3.4.
  • Lithography
  • 2.2.3.5.
  • Self-organisation
  • 2.2.3.6.
  • Jochen Lambauer, Dr. Ulrich Fahl, Prof. Dr. Alfred Vo & beta;
  • Nanoanalytics
  • 2.3.
  • Innovation and Economic Potential
  • Dr. Wolfgang Luther
  • 2.3.1.
  • Nanotechnology as a Cross-Cutting Innovation Field
  • 2.3.2.
  • Economic Relevance of Nanotechnology
  • 2.3.3.
  • Nanotechnology Companies in the Value-Added Chain
  • 1.1.
  • 2.4.
  • Risk and Safety Issues
  • Niels Boeing
  • 2.4.1.
  • The Image of Nanotechnology: Three Phases
  • 2.4.1.1.
  • Pre-2000: the futuristic phase
  • 2.4.1.2.
  • 2000-2006: the nanomarkets phase
  • 2.4.1.3.
  • The Energy Sector in Germany and Its Future, Challenges
  • Since 2006: the sceptical phase
  • 2.4.2.
  • A Systematic Approach to Nanotechnology Risks
  • 2.4.2.1.
  • Primary nanorisks: impacts on health and the environment
  • 2.4.2.2.
  • Secondary nanorisks: impacts on society and the economy
  • 2.4.3.
  • Conclusion
  • 2.5.
  • 1.1.1.
  • Public Perception of Nanotechnologies: Challenges and Recommendations for Communication Strategies and Dialogue Concepts
  • Dr. Antje Grobe, Nico Kreinberger
  • 2.5.1.
  • Introduction
  • 2.5.2.
  • Psychological, Social, and Cultural Factors of Risk Perception
  • 2.5.3.
  • Public Perception of Nanotechnologies: an International Comparison
  • 2.5.4.
  • Consumer's Perception of Nanotechnologies in German Language Areas
Dimensions
24 cm
Extent
xxiii, 349, [28] pages
Isbn
9789814310819
Media category
unmediated
Media MARC source
rdamedia
Media type code
n
Other physical details
illustrations (some color)
System control number
(OCoLC)731925174

Library Locations

  • African Studies LibraryBorrow it
    771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Alumni Medical LibraryBorrow it
    72 East Concord Street, Boston, MA, 02118, US
    42.336388 -71.072393
  • Astronomy LibraryBorrow it
    725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US
    42.350259 -71.105717
  • Fineman and Pappas Law LibrariesBorrow it
    765 Commonwealth Avenue, Boston, MA, 02215, US
    42.350979 -71.107023
  • Frederick S. Pardee Management LibraryBorrow it
    595 Commonwealth Avenue, Boston, MA, 02215, US
    42.349626 -71.099547
  • Howard Gotlieb Archival Research CenterBorrow it
    771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Mugar Memorial LibraryBorrow it
    771 Commonwealth Avenue, Boston, MA, 02215, US
    42.350723 -71.108227
  • Music LibraryBorrow it
    771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Pikering Educational Resources LibraryBorrow it
    2 Silber Way, Boston, MA, 02215, US
    42.349804 -71.101425
  • School of Theology LibraryBorrow it
    745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350494 -71.107235
  • Science & Engineering LibraryBorrow it
    38 Cummington Mall, Boston, MA, 02215, US
    42.348472 -71.102257
  • Stone Science LibraryBorrow it
    675 Commonwealth Avenue, Boston, MA, 02445, US
    42.350103 -71.103784
Processing Feedback ...