The Resource Natural complexity : a modeling handbook, Paul Charbonneau

Natural complexity : a modeling handbook, Paul Charbonneau

Label
Natural complexity : a modeling handbook
Title
Natural complexity
Title remainder
a modeling handbook
Statement of responsibility
Paul Charbonneau
Creator
Subject
Language
eng
Summary
This book provides a short, hands-on introduction to the science of complexity using simple computational models of natural complex systems--with models and exercises drawn from physics, chemistry, geology, and biology. By working through the models and engaging in additional computational explorations suggested at the end of each chapter, readers very quickly develop an understanding of how complex structures and behaviors can emerge in natural phenomena as diverse as avalanches, forest fires, earthquakes, chemical reactions, animal flocks, and epidemic diseases. Natural Complexity provides the necessary topical background, complete source codes in Python, and detailed explanations for all computational models
Member of
Cataloging source
YDX
http://library.link/vocab/creatorDate
1961-
http://library.link/vocab/creatorName
Charbonneau, Paul
Illustrations
illustrations
Index
index present
LC call number
Q175.32.C65
LC item number
C43 2017
Literary form
non fiction
Nature of contents
bibliography
Series statement
Primers in complex systems
http://library.link/vocab/subjectName
  • Complexity (Philosophy)
  • Physics
  • Computational complexity
  • Biocomplexity
  • Biocomplexity
  • Complexity (Philosophy)
  • Computational complexity
  • Physics
Label
Natural complexity : a modeling handbook, Paul Charbonneau
Instantiates
Publication
Copyright
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Part 1. What Is complexity?: Complexity Is not simple -- Randomness Is not complexity -- Chaos Is not complexity -- Open dissipative systems -- Natural complexity -- About the computer programs listed in this book -- Part 2. Iterated growth: Cellular automata in one spatial dimension -- Cellular automata in two spatial dimensions -- A zoo of 2-D structures from simple rules -- Agents, ants, and highways -- Emergent structures and behaviors -- Part 3. Aggregation: Diffusion-limited aggregation -- Numerical implementation -- A representative simulation -- A zoo of aggregates -- Fractal geometry -- Self-similarity and scale invariance -- Part 4. Percolation: Percolation in one dimension -- Percolation in two dimensions -- Cluster sizes -- Fractal clusters -- Is it really a power law? -- Criticality -- Part 5. Sandpiles: Model definition -- Numerical implementation -- A representative simulation -- Measuring avalanches -- Self-organized criticality--
  • Part 6. Forest fires: Model definition -- Numerical implementation -- A representative simulation -- Model behavior -- Back to criticality -- The pros and cons of wildfire management -- Part 7. Traffic jams: Model definition -- Numerical implementation -- A representative simulation -- Model behavior -- Traffic jams as avalanches -- Car traffic as a SOC system? -- Part 8. Earthquakes: The Burridge-Knopoff model -- Numerical implementation -- A representative simulation -- Model behavior -- Predicting real earthquakes -- Part 9. Epidemics: Model definition -- Numerical implementation -- A representative simulation -- Model behavior -- Epidemic self-organization -- Small-world networks -- Part 10. Flocking -- Model definition -- Numerical implementation -- A behavioral zoo -- Segregation of active and passive flockers -- Why you should never panic -- Part 11. Pattern formation: Excitable systems -- The hodgepodge machine -- Numerical implementation--
  • Waves, spirals, spaghettis, and cells -- Spiraling out -- Spontaneous pattern formation -- Part 12. Epilogue: A hike on slickrock -- Johannes Kepler and the unity of nature -- From lichens to solar flares -- Emergence and natural order -- Into the abyss: your turn -- Part A. Basic elements of the Python programming language: Code structure -- Variables and arrays -- Operators -- Loop constructs -- Conditional constructs -- Input/output and graphics -- Part B. Probability density functions: A simple example -- Continuous PDFs -- Some mathematical properties of power-law PDFs -- Cumulative PDFs -- PDFs with logarithmic bin sizes -- Better fits to power-law PDFs -- Part C. Random Numbers and walks: Random deviates -- The classical random walk -- Random walk and diffusion -- Part D. Lattice computation: Nearest-neighbor templates -- Periodic boundary conditions -- Random walks on lattices
Dimensions
22 cm.
Extent
xiv, 355 pages
Isbn
9780691176840
Lccn
2016953537
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations (some color)
System control number
  • (OCoLC)962351906
  • (OCoLC)ocn962351906
Label
Natural complexity : a modeling handbook, Paul Charbonneau
Publication
Copyright
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Part 1. What Is complexity?: Complexity Is not simple -- Randomness Is not complexity -- Chaos Is not complexity -- Open dissipative systems -- Natural complexity -- About the computer programs listed in this book -- Part 2. Iterated growth: Cellular automata in one spatial dimension -- Cellular automata in two spatial dimensions -- A zoo of 2-D structures from simple rules -- Agents, ants, and highways -- Emergent structures and behaviors -- Part 3. Aggregation: Diffusion-limited aggregation -- Numerical implementation -- A representative simulation -- A zoo of aggregates -- Fractal geometry -- Self-similarity and scale invariance -- Part 4. Percolation: Percolation in one dimension -- Percolation in two dimensions -- Cluster sizes -- Fractal clusters -- Is it really a power law? -- Criticality -- Part 5. Sandpiles: Model definition -- Numerical implementation -- A representative simulation -- Measuring avalanches -- Self-organized criticality--
  • Part 6. Forest fires: Model definition -- Numerical implementation -- A representative simulation -- Model behavior -- Back to criticality -- The pros and cons of wildfire management -- Part 7. Traffic jams: Model definition -- Numerical implementation -- A representative simulation -- Model behavior -- Traffic jams as avalanches -- Car traffic as a SOC system? -- Part 8. Earthquakes: The Burridge-Knopoff model -- Numerical implementation -- A representative simulation -- Model behavior -- Predicting real earthquakes -- Part 9. Epidemics: Model definition -- Numerical implementation -- A representative simulation -- Model behavior -- Epidemic self-organization -- Small-world networks -- Part 10. Flocking -- Model definition -- Numerical implementation -- A behavioral zoo -- Segregation of active and passive flockers -- Why you should never panic -- Part 11. Pattern formation: Excitable systems -- The hodgepodge machine -- Numerical implementation--
  • Waves, spirals, spaghettis, and cells -- Spiraling out -- Spontaneous pattern formation -- Part 12. Epilogue: A hike on slickrock -- Johannes Kepler and the unity of nature -- From lichens to solar flares -- Emergence and natural order -- Into the abyss: your turn -- Part A. Basic elements of the Python programming language: Code structure -- Variables and arrays -- Operators -- Loop constructs -- Conditional constructs -- Input/output and graphics -- Part B. Probability density functions: A simple example -- Continuous PDFs -- Some mathematical properties of power-law PDFs -- Cumulative PDFs -- PDFs with logarithmic bin sizes -- Better fits to power-law PDFs -- Part C. Random Numbers and walks: Random deviates -- The classical random walk -- Random walk and diffusion -- Part D. Lattice computation: Nearest-neighbor templates -- Periodic boundary conditions -- Random walks on lattices
Dimensions
22 cm.
Extent
xiv, 355 pages
Isbn
9780691176840
Lccn
2016953537
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
illustrations (some color)
System control number
  • (OCoLC)962351906
  • (OCoLC)ocn962351906

Library Locations

  • African Studies LibraryBorrow it
    771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Alumni Medical LibraryBorrow it
    72 East Concord Street, Boston, MA, 02118, US
    42.336388 -71.072393
  • Astronomy LibraryBorrow it
    725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US
    42.350259 -71.105717
  • Fineman and Pappas Law LibrariesBorrow it
    765 Commonwealth Avenue, Boston, MA, 02215, US
    42.350979 -71.107023
  • Frederick S. Pardee Management LibraryBorrow it
    595 Commonwealth Avenue, Boston, MA, 02215, US
    42.349626 -71.099547
  • Howard Gotlieb Archival Research CenterBorrow it
    771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Mugar Memorial LibraryBorrow it
    771 Commonwealth Avenue, Boston, MA, 02215, US
    42.350723 -71.108227
  • Music LibraryBorrow it
    771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350723 -71.108227
  • Pikering Educational Resources LibraryBorrow it
    2 Silber Way, Boston, MA, 02215, US
    42.349804 -71.101425
  • School of Theology LibraryBorrow it
    745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US
    42.350494 -71.107235
  • Science & Engineering LibraryBorrow it
    38 Cummington Mall, Boston, MA, 02215, US
    42.348472 -71.102257
  • Stone Science LibraryBorrow it
    675 Commonwealth Avenue, Boston, MA, 02445, US
    42.350103 -71.103784
Processing Feedback ...