Borrow it
- African Studies Library
- Alumni Medical Library
- Astronomy Library
- Fineman and Pappas Law Libraries
- Frederick S. Pardee Management Library
- Howard Gotlieb Archival Research Center
- Mugar Memorial Library
- Music Library
- Pikering Educational Resources Library
- School of Theology Library
- Science & Engineering Library
- Stone Science Library
The Resource Visual data mining : theory, techniques and tools for visual analytics, Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.), (electronic resource)
Visual data mining : theory, techniques and tools for visual analytics, Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.), (electronic resource)
Resource Information
The item Visual data mining : theory, techniques and tools for visual analytics, Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.), (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Boston University Libraries.This item is available to borrow from all library branches.
Resource Information
The item Visual data mining : theory, techniques and tools for visual analytics, Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.), (electronic resource) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Boston University Libraries.
This item is available to borrow from all library branches.
- Summary
- The importance of visual data mining, as a strong sub-discipline of data mining, had already been recognized in the beginning of the decade. In 2005 a panel of renowned individuals met to address the shortcomings and drawbacks of the current state of visual information processing. The need for a systematic and methodological development of visual analytics was detected. This book aims at addressing this need. Through a collection of 21 contributions selected from more than 46 submissions, it offers a systematic presentation of the state of the art in the field. The volume is structured in three parts on theory and methodologies, techniques, and tools and applications
- Language
- eng
- Extent
- 1 online resource (x, 406 p.)
- Contents
-
- Visual Data Mining: An Introduction and Overview
- Visual Data Mining: An Introduction and Overview
- 1 – Theory and Methodologies
- The 3DVDM Approach: A Case Study with Clickstream Data
- Form-Semantics-Function – A Framework for Designing Visual Data Representations for Visual Data Mining
- A Methodology for Exploring Association Models
- Visual Exploration of Frequent Itemsets and Association Rules
- Visual Analytics: Scope and Challenges
- 2 – Techniques
- Using Nested Surfaces for Visual Detection of Structures in Databases
- Visual Mining of Association Rules
- Interactive Decision Tree Construction for Interval and Taxonomical Data
- Visual Methods for Examining SVM Classifiers
- Text Visualization for Visual Text Analytics
- Visual Discovery of Network Patterns of Interaction between Attributes
- Mining Patterns for Visual Interpretation in a Multiple-Views Environment
- Using 2D Hierarchical Heavy Hitters to Investigate Binary Relationships
- Complementing Visual Data Mining with the Sound Dimension: Sonification of Time Dependent Data
- Context Visualization for Visual Data Mining
- Assisting Human Cognition in Visual Data Mining
- 3 – Tools and Applications
- Immersive Visual Data Mining: The 3DVDM Approach
- DataJewel: Integrating Visualization with Temporal Data Mining
- A Visual Data Mining Environment
- Integrative Visual Data Mining of Biomedical Data: Investigating Cases in Chronic Fatigue Syndrome and Acute Lymphoblastic Leukaemia
- Towards Effective Visual Data Mining with Cooperative Approaches
- Isbn
- 9783540710806
- Label
- Visual data mining : theory, techniques and tools for visual analytics
- Title
- Visual data mining
- Title remainder
- theory, techniques and tools for visual analytics
- Statement of responsibility
- Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.)
- Language
- eng
- Summary
- The importance of visual data mining, as a strong sub-discipline of data mining, had already been recognized in the beginning of the decade. In 2005 a panel of renowned individuals met to address the shortcomings and drawbacks of the current state of visual information processing. The need for a systematic and methodological development of visual analytics was detected. This book aims at addressing this need. Through a collection of 21 contributions selected from more than 46 submissions, it offers a systematic presentation of the state of the art in the field. The volume is structured in three parts on theory and methodologies, techniques, and tools and applications
- Cataloging source
- GW5XE
- http://library.link/vocab/creatorDate
- 1962-
- http://library.link/vocab/creatorName
- Simoff, Simeon J.
- Image bit depth
- 0
- LC call number
- T385
- LC item number
- .S548 2008eb
- Literary form
- non fiction
- Nature of contents
- dictionaries
- http://library.link/vocab/relatedWorkOrContributorDate
- 1964-
- http://library.link/vocab/relatedWorkOrContributorName
-
- SpringerLink
- Böhlen, Michael H.
- Mazeika, Arturas
- Series statement
- Lecture Notes in Computer Science,
- Series volume
- 4404
- http://library.link/vocab/subjectName
-
- Computer graphics
- Data mining
- Information storage and retrieval systems
- Computer science
- Computer graphics
- Computer science
- Data mining
- Information storage and retrieval systems
- Informatique
- Label
- Visual data mining : theory, techniques and tools for visual analytics, Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.), (electronic resource)
- Antecedent source
- mixed
- Bibliography note
- Includes bibliographical references and index
- Color
- not applicable
- Contents
- Visual Data Mining: An Introduction and Overview -- Visual Data Mining: An Introduction and Overview -- 1 – Theory and Methodologies -- The 3DVDM Approach: A Case Study with Clickstream Data -- Form-Semantics-Function – A Framework for Designing Visual Data Representations for Visual Data Mining -- A Methodology for Exploring Association Models -- Visual Exploration of Frequent Itemsets and Association Rules -- Visual Analytics: Scope and Challenges -- 2 – Techniques -- Using Nested Surfaces for Visual Detection of Structures in Databases -- Visual Mining of Association Rules -- Interactive Decision Tree Construction for Interval and Taxonomical Data -- Visual Methods for Examining SVM Classifiers -- Text Visualization for Visual Text Analytics -- Visual Discovery of Network Patterns of Interaction between Attributes -- Mining Patterns for Visual Interpretation in a Multiple-Views Environment -- Using 2D Hierarchical Heavy Hitters to Investigate Binary Relationships -- Complementing Visual Data Mining with the Sound Dimension: Sonification of Time Dependent Data -- Context Visualization for Visual Data Mining -- Assisting Human Cognition in Visual Data Mining -- 3 – Tools and Applications -- Immersive Visual Data Mining: The 3DVDM Approach -- DataJewel: Integrating Visualization with Temporal Data Mining -- A Visual Data Mining Environment -- Integrative Visual Data Mining of Biomedical Data: Investigating Cases in Chronic Fatigue Syndrome and Acute Lymphoblastic Leukaemia -- Towards Effective Visual Data Mining with Cooperative Approaches
- Dimensions
- unknown
- Extent
- 1 online resource (x, 406 p.)
- File format
- multiple file formats
- Form of item
- electronic
- Isbn
- 9783540710806
- Level of compression
- uncompressed
- Other physical details
- ill.
- Quality assurance targets
- absent
- Reformatting quality
- access
- Specific material designation
- remote
- Stock number
- 978-3-540-71079-0
- System control number
-
- (OCoLC)272298876
- (OCoLC)ocn272298876
- (DE-He213)978-3-540-71080-6
- Label
- Visual data mining : theory, techniques and tools for visual analytics, Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.), (electronic resource)
- Antecedent source
- mixed
- Bibliography note
- Includes bibliographical references and index
- Color
- not applicable
- Contents
- Visual Data Mining: An Introduction and Overview -- Visual Data Mining: An Introduction and Overview -- 1 – Theory and Methodologies -- The 3DVDM Approach: A Case Study with Clickstream Data -- Form-Semantics-Function – A Framework for Designing Visual Data Representations for Visual Data Mining -- A Methodology for Exploring Association Models -- Visual Exploration of Frequent Itemsets and Association Rules -- Visual Analytics: Scope and Challenges -- 2 – Techniques -- Using Nested Surfaces for Visual Detection of Structures in Databases -- Visual Mining of Association Rules -- Interactive Decision Tree Construction for Interval and Taxonomical Data -- Visual Methods for Examining SVM Classifiers -- Text Visualization for Visual Text Analytics -- Visual Discovery of Network Patterns of Interaction between Attributes -- Mining Patterns for Visual Interpretation in a Multiple-Views Environment -- Using 2D Hierarchical Heavy Hitters to Investigate Binary Relationships -- Complementing Visual Data Mining with the Sound Dimension: Sonification of Time Dependent Data -- Context Visualization for Visual Data Mining -- Assisting Human Cognition in Visual Data Mining -- 3 – Tools and Applications -- Immersive Visual Data Mining: The 3DVDM Approach -- DataJewel: Integrating Visualization with Temporal Data Mining -- A Visual Data Mining Environment -- Integrative Visual Data Mining of Biomedical Data: Investigating Cases in Chronic Fatigue Syndrome and Acute Lymphoblastic Leukaemia -- Towards Effective Visual Data Mining with Cooperative Approaches
- Dimensions
- unknown
- Extent
- 1 online resource (x, 406 p.)
- File format
- multiple file formats
- Form of item
- electronic
- Isbn
- 9783540710806
- Level of compression
- uncompressed
- Other physical details
- ill.
- Quality assurance targets
- absent
- Reformatting quality
- access
- Specific material designation
- remote
- Stock number
- 978-3-540-71079-0
- System control number
-
- (OCoLC)272298876
- (OCoLC)ocn272298876
- (DE-He213)978-3-540-71080-6
Library Locations
-
African Studies LibraryBorrow it771 Commonwealth Avenue, 6th Floor, Boston, MA, 02215, US42.350723 -71.108227
-
-
Astronomy LibraryBorrow it725 Commonwealth Avenue, 6th Floor, Boston, MA, 02445, US42.350259 -71.105717
-
Fineman and Pappas Law LibrariesBorrow it765 Commonwealth Avenue, Boston, MA, 02215, US42.350979 -71.107023
-
Frederick S. Pardee Management LibraryBorrow it595 Commonwealth Avenue, Boston, MA, 02215, US42.349626 -71.099547
-
Howard Gotlieb Archival Research CenterBorrow it771 Commonwealth Avenue, 5th Floor, Boston, MA, 02215, US42.350723 -71.108227
-
-
Music LibraryBorrow it771 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US42.350723 -71.108227
-
Pikering Educational Resources LibraryBorrow it2 Silber Way, Boston, MA, 02215, US42.349804 -71.101425
-
School of Theology LibraryBorrow it745 Commonwealth Avenue, 2nd Floor, Boston, MA, 02215, US42.350494 -71.107235
-
Science & Engineering LibraryBorrow it38 Cummington Mall, Boston, MA, 02215, US42.348472 -71.102257
-
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/portal/Visual-data-mining--theory-techniques-and-tools/BU3Huh6AWc4/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/portal/Visual-data-mining--theory-techniques-and-tools/BU3Huh6AWc4/">Visual data mining : theory, techniques and tools for visual analytics, Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.), (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Visual data mining : theory, techniques and tools for visual analytics, Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.), (electronic resource)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/portal/Visual-data-mining--theory-techniques-and-tools/BU3Huh6AWc4/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/portal/Visual-data-mining--theory-techniques-and-tools/BU3Huh6AWc4/">Visual data mining : theory, techniques and tools for visual analytics, Simeon J. Simoff, Michael H. Böhlen, Arturas Mazeika (eds.), (electronic resource)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>