#
Systèmes hamiltoniens
Resource Information
The concept ** Systèmes hamiltoniens** represents the subject, aboutness, idea or notion of resources found in **Boston University Libraries**.

The Resource
Systèmes hamiltoniens
Resource Information

The concept

**Systèmes hamiltoniens**represents the subject, aboutness, idea or notion of resources found in**Boston University Libraries**.- Label
- Systèmes hamiltoniens

- Source
- ram

## Context

Context of Systèmes hamiltoniens#### Subject of

No resources found

No enriched resources found

- Convexity methods in Hamiltonian mechanics
- Differential Galois theory and non-integrability of Hamiltonian systems
- Four-dimensional integrable Hamiltonian systems with simple singular points (topological aspects)
- Global and accurate vibration Hamiltonians from high resolution molecular spectroscopy
- Global aspects of classical integrable systems
- Hamiltonian flows and evolution semigroups
- Hamiltonian structure and Lyapunov stability for ideal continuum dynamics
- Hamiltonian systems : chaos and quantization
- Hard ball systems and the Lorentz gas
- Integrable Hamiltonian systems and spectral theory
- Integrable systems in the realm of algebraic geometry
- Integrable systems of classical mechanics and Lie algebras
- Introduction to Hamiltonian dynamical systems and the n-body problem
- Nearly integrable infinite-dimensional Hamiltonian systems
- Periodic solutions of the N-body problem
- Poincaré and the three body problem
- Quantum mechanics for Hamiltonians defined as quadratic forms
- Quasi-periodic motions in families of dynamical systems : order amidst chaos
- Random perturbations of Hamiltonian systems
- Regular and stochastic motion
- Schaum's outline of theory and problems of Lagrangian dynamics, : with a treatment of Euler's equations of motion, Hamilton's equations and Hamilton's principle,
- Separatrix surfaces and invariant manifolds of a class of integrable Hamiltonian systems and their perturbations
- Soliton equations and Hamiltonian systems
- Stochastic controls : Hamiltonian systems and HJB equations
- Symplectic invariants and Hamiltonian dynamics
- The Fokker-Planck equation for stochastic dynamical systems and its explicit steady state solutions
- The geometry of the group of symplectic diffeomorphism
- Topological invariants of plane curves and caustics
- Variational methods : applications to nonlinear partial differential equations and Hamiltonian systems
- Weak chaos and quasi-regular patterns

## Embed

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/4iXhMLPly68/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/4iXhMLPly68/">Systèmes hamiltoniens</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Concept Systèmes hamiltoniens

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/4iXhMLPly68/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/4iXhMLPly68/">Systèmes hamiltoniens</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>`