#
Riemannian manifolds
Resource Information
The concept ** Riemannian manifolds** represents the subject, aboutness, idea or notion of resources found in **Boston University Libraries**.

The Resource
Riemannian manifolds
Resource Information

The concept

**Riemannian manifolds**represents the subject, aboutness, idea or notion of resources found in**Boston University Libraries**.- Label
- Riemannian manifolds

- Authority link

- Source
- fast

## Context

Context of Riemannian manifolds#### Subject of

- An introduction to differentiable manifolds and Riemannian geometry
- An introduction to differentiable manifolds and Riemannian geometry
- Behavior of distant maximal geodesics in finitely connected complete 2-dimensional Riemannian manifolds
- Bieberbach groups and flat manifolds
- Classification theory of Riemannian manifolds : harmonic, quasiharmonic, and biharmonic functions
- Closed geodesics on Riemannian manifolds
- Comparison theorems in riemannian geometry
- Conformal deformations of riemannian manifolds,
- Contact manifolds in Riemannian geometry
- Differentiable manifolds : forms, currents, harmonic forms
- Differential and Riemannian manifolds
- Differential systems and isometric embeddings
- Déformations infinitésimales des structures conformes plates
- Eigenfunctions of the Laplacian of a Riemannian manifold
- Equilibrium states in negative curvature
- Existence and regularity of minimal surfaces on Riemannian manifolds
- Foliations on Riemannian manifolds
- Generalized Heisenberg groups and Damek-Ricci harmonic spaces
- Generalized symmetric spaces
- Geodesic flows on closed Riemann manifolds with negative curvature,
- Geometric topology : recent developments : lectures given on the 1st session of the Centro internazionale matematico estivo (C.I.M.E.) held at Montecatini Terme, Italy, June 4-12, 1990
- Harmonic and minimal maps : with applications in geometry and physics
- Harmonic maps between Riemannian polyhedra
- Homogeneous structures on Riemannian manifolds
- Index theorems of Atiyah, Bott, Patodi and curvature invariants
- Integral formulas in Riemannian geometry
- Invariant manifolds
- Invariant theory of variational problems on subspaces of a Riemannian manifold
- L2-invariants : theory and applications to geometry and K-theory
- Lectures on closed geodesics
- Lectures on minimal submanifolds
- Metrics of positive scalar curvature and generalised Morse functions
- Minimal varieties in real and complex geometry
- Nonlinear analysis on manifolds : Sobolev spaces and inequalities
- Nonlinear analysis on manifolds, Monge-Ampère equations
- On the regularity of the composition of diffeomorphisms
- Prescribing the curvature of a Riemannian manifold
- Riemannian foliations
- Riemannian manifolds of conullity two
- Riemannian symmetric spaces of rank one
- Riemannsche Hilbertmannigfaltigkeiten; : periodische geodätische
- Second order analysis on (P2(M), W2)
- Semisimple groups and Riemannian symmetric spaces
- Separation of variables for Riemannian spaces of constant curvature
- Sobolev spaces on Riemannian manifolds
- Strong rigidity of locally symmetric spaces,
- Structures on manifolds
- Sub-Riemannian geometry : general theory and examples
- Sur les groupes hyperboliques d'après Mikhael Gromov
- The Laplacian on a Riemannian manifold : an introduction to analysis on manifolds
- The Ricci flow : techniques and applications
- The geometry of curvature homogeneous pseudo-Riemannian manifolds
- The kinematic formula in Riemannian homogeneous spaces
- Two classes of Riemannian manifolds whose geodesic flows are integrable
- Variational problems in geometry
- Yamabe-type equations on complete, noncompact manifolds

## Embed (Experimental)

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/99UtpirHRQg/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/99UtpirHRQg/">Riemannian manifolds</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Concept Riemannian manifolds

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/99UtpirHRQg/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/99UtpirHRQg/">Riemannian manifolds</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>`