#
Differentiable dynamical systems
Resource Information
The concept ** Differentiable dynamical systems** represents the subject, aboutness, idea or notion of resources found in **Boston University Libraries**.

The Resource
Differentiable dynamical systems
Resource Information

The concept

**Differentiable dynamical systems**represents the subject, aboutness, idea or notion of resources found in**Boston University Libraries**.- Label
- Differentiable dynamical systems

## Context

Context of Differentiable dynamical systems#### Subject of

- An introduction to dynamical systems
- Bifurcation theory : an introduction with applications to partial differential equations
- Billiards : a genetic introduction to the dynamics of systems with impacts
- Chaos, fractals, and dynamics
- Classical and quantum models and arithmetic problems
- Continuum theory and dynamical systems
- Differential equations, dynamical systems, and control science : a festschrift in honor of Lawrence Markus
- Discretization of homoclinic orbits, rapid forcing, and "invisible chaos"
- Dynamical systems and evolution equations : theory and applications
- Dynamical systems in classical mechanics
- Elements of differentiable dynamics and bifurcation theory
- Energy methods in dynamics
- Fractal-based methods in analysis
- Geometric theory of dynamical systems : an introduction
- Germs of diffeomorphisms in the plane
- Group-theoretical methods for integration of nonlinear dynamical systems
- Invariant manifolds, entropy, and billiards : smooth maps with singularities
- Inverse limits : from continua to chaos
- Nonlinear differential equations and dynamical systems
- Nonlinear oscillations, dynamical systems, and bifurcations of vector fields
- Numerical methods for bifurcations of dynamical equilibria
- Periodic solutions of singular Lagrangian systems
- Random dynamical systems
- Renormalization and 3-manifolds which fiber over the circle
- Semidynamical systems in infinite dimensional spaces
- Shadowing in dynamical systems
- Symbolic dynamcis [i.e. dynamics] and hyperbolic groups
- Textile systems for endomorphisms and automorphisms of the shift
- The 2-dimensional attractor of xʹ(t)=-[mu]x(t)+f(x(t-1))

## Embed (Experimental)

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/CyXenrKf7Nw/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/CyXenrKf7Nw/">Differentiable dynamical systems</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Concept Differentiable dynamical systems

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/CyXenrKf7Nw/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/CyXenrKf7Nw/">Differentiable dynamical systems</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>`