#
Genetic algorithms
Resource Information
The concept ** Genetic algorithms** represents the subject, aboutness, idea or notion of resources found in **Boston University Libraries**.

The Resource
Genetic algorithms
Resource Information

The concept

**Genetic algorithms**represents the subject, aboutness, idea or notion of resources found in**Boston University Libraries**.- Label
- Genetic algorithms

- Authority link
- http://id.loc.gov/authorities/subjects/sh92002377

## Context

Context of Genetic algorithms#### Subject of

- A-life for music : music and computer models of living systems
- Advances in fuzzy logic, neural networks, and genetic algorithms : IEEE/Nagoya University World Wisepersons Workshop, Nagoya, Japan, August 9-10, 1994 : selected papers
- Algorithms for next-generation sequencing
- Allocation of forces, fires, and effects using genetic algorithms
- An introduction to genetic algorithms for scientists and engineers
- Application of advanced optimization and expert system approaches to compact modeling of semiconductor devices
- Applied evolutionary algorithms in Java
- Cellular genetic algorithms
- Chaos theory in the financial markets : applying fractals, fuzzy logic, genetic algorithms, swarm simulation & the Monte Carlo method to manage market chaos & volatility
- Classification and learning using genetic algorithms : applications in bioinformatics and web intelligence
- Differential evolution : a practical approach to global optimization
- Evolutionary algorithms for embedded system design
- Evolutionary algorithms for mobile ad hoc networks
- Evolutionary algorithms in engineering applications
- Evolutionary multiobjective optimization : theoretical advances and applications
- Foundations of generic optimization
- Fusion of neural networks, fuzzy sets, and genetic algorithms : industrial applications
- Fuzzy evidence in identification, forecasting and diagnosis
- Fuzzy modeling and genetic algorithms for data mining and exploration
- Gene expression programming : mathematical modeling by an artificial intelligence
- Genetic algorithms
- Genetic algorithms + data structures = evolution programs
- Genetic algorithms : concepts and designs
- Genetic algorithms : principles and perspectives : a guide to GA theory
- Genetic algorithms : principles and perspectives : a guide to GA theory
- Genetic algorithms and engineering design
- Genetic algorithms and fuzzy logic systems : soft computing perspectives
- Genetic algorithms and investment strategies
- Genetic algorithms and simulated annealing
- Genetic algorithms for machine learning
- Genetic algorithms in electromagnetics
- Genetic algorithms in electromagnetics
- Genetic algorithms in engineering and computer science
- Genetic algorithms in optimisation, simulation and modelling
- Genetic algorithms in search, optimization, and machine learning
- Genetic fuzzy systems : evolutionary tuning and learning of fuzzy knowledge bases
- How good are genetic algorithms at finding large cliques : an experimental study
- Industrial applications of genetic algorithms
- Information processing with evolutionary algorithms : from industrial applications to academic speculations
- Intelligent hybrid systems : fuzzy logic, neural networks, and genetic algorithms
- Intelligent optimisation techniques : genetic algorithms, tabu search, simulated annealing and neural networks
- Introducción a los algoritmos genéticos y la programación genética
- Introduction to evolutionary algorithms
- Introduction to genetic algorithms
- Learning algorithms : theory and applications in signal processing, control, and communications
- Neural network training using genetic algorithms
- Parameter setting in evolutionary algorithms
- Practical genetic algorithms
- Practical genetic algorithms
- Practical handbook of genetic algorithms
- Scalable optimization via probabilistic modeling : from algorithms to applications
- Spatial evolutionary modeling
- The practical handbook of genetic algorithms : applications
- The simple genetic algorithm : foundations and theory
- The simple genetic algorithm : foundations and theory
- Towards evolvable hardware : the evolutionary engineering approach

## Embed (Experimental)

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/fmxMeTh-F1c/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/fmxMeTh-F1c/">Genetic algorithms</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Concept Genetic algorithms

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/fmxMeTh-F1c/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/fmxMeTh-F1c/">Genetic algorithms</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>`