L-functions
Resource Information
The concept L-functions represents the subject, aboutness, idea or notion of resources found in Boston University Libraries.
The Resource
L-functions
Resource Information
The concept L-functions represents the subject, aboutness, idea or notion of resources found in Boston University Libraries.
- Label
- L-functions
- Authority link
- (uri) http://id.loc.gov/authorities/subjects/sh85073592
29 Items that share the Concept L-functions
Context
Context of L-functionsSubject of
No resources found
No enriched resources found
- Advanced analytic number theory : L-functions
- Algebraic K-groups as Galois modules
- An introduction to the Langlands program
- Automorphic forms and L-functions for the group GL(n,R)
- Cohomologie l-adique et fonctions L
- Degree 16 standard L-function of GSp(2) x GSp(2)
- Eisenstein Cohomology for GL‹sub›N‹/sub› and the Special Values of Rankin-Selberg L-Functions : (AMS-203)
- Eisenstein series and automorphic L-functions
- Elementary theory of L-functions and Eisenstein series
- Formes automorphes (II) : le cas du groupe GSp(4)
- Heegner points and Rankin L-series
- Kolyvagin systems
- L-functions and Galois representations
- Lectures on automorphic L-functions
- Les conjectures de Stark sur les fonctions L d'Artin en s=O : notes d'un cours à Orsay [de] John Tate
- Moments, monodromy, and perversity : a diophantine perspective
- Multiple Dirichlet series, L-functions and automorphic forms
- Non-Archimedean L-functions and arithmetical Siegel modular forms
- P-adic L-functions and p-adic representations
- Random matrices, Frobenius eigenvalues, and monodromy
- Rankin-Selberg convolutions for SO2l+1 x GLn : local theory
- Regularised integrals, sums, and traces : an analytic point of view
- The Eisenstein distribution and p-adic L-functions
- The descent map from automorphic representations of GL(n) to classical groups
- The lifted root number conjecture and Iwasawa theory
- The local Langlands conjecture for GL(2)
- Twisted L-functions and monodromy
- Value-distribution of L-functions
- Zeta and L-functions in number theory and combinatorics
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/ix2wsTDl9G8/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/ix2wsTDl9G8/">L-functions</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Concept L-functions
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/ix2wsTDl9G8/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/ix2wsTDl9G8/">L-functions</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>