Lie-groepen
Resource Information
The concept Lie-groepen represents the subject, aboutness, idea or notion of resources found in Boston University Libraries.
The Resource
Lie-groepen
Resource Information
The concept Lie-groepen represents the subject, aboutness, idea or notion of resources found in Boston University Libraries.
- Label
- Lie-groepen
- Source
- gtt
81 Items that share the Concept Lie-groepen
Context
Context of Lie-groepenSubject of
No resources found
No enriched resources found
- Algebraic groups and Lie groups : a volume of papers in honour of the late R.W. Richardson
- Almost commuting elements in compact Lie groups
- Applications of Lie groups to differential equations
- Applications of Lie groups to differential equations
- Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space
- Cohomological induction and unitary representations
- Complex analytic geometry of complex parallelizable manifolds
- Conjugacy of Alt5 and SL(2, 5) subgroups of E(C)
- Connections, curvature, and cohomology
- Construction de séries discrètes p-adiques : sur les séries discrètes non ramifiées des groupes réductifs déployés p-adiques
- Crystallographic groups and their generalizations : workshop, Katholieke Universiteit Leuven Campus Kortrijk, Belgium, May 26-28, 1999
- Curvature and characteristic classes
- Degenerate principal series for symplectic and odd-orthogonal groups
- Degenerate principal series for symplectic groups
- Differential geometry, Lie groups, and symmetric spaces
- Emergence of the theory of Lie groups : an essay in the history of mathematics, 1869-1926
- Enright-Shelton theory and Vogan's problem for generalized principal series
- Equivariant analytic localization of group representations
- Ergodic theory and semisimple groups
- Finite groups of Lie type : conjugacy classes and complex characters
- Foundations of differentiable manifolds and Lie groups
- Foundations of differentiable manifolds and Lie groups
- Group structure of gauge theories
- Groups and geometric analysis : integral geometry, invariant differential operators, and spherical functions
- Harmonic analysis on semi-simple Lie groups
- Infinite dimensional groups with applications
- Integration and harmonic analysis on compact groups
- Introduction to Lie groups and Lie algebras
- Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés
- Intégrales orbitales sur GL(N, F) où F est un corps local non archimédien
- Involutions complexes et vecteurs sphériques associés pour les groupes de Lie nilpotents réels
- Kac-Moody groups, their flag varieties, and representation theory
- Kirillov's seminar on representation theory
- Lectures on Lie groups and Lie algebras
- Lectures on harmonic analysis (non-Abelian)
- Lie algebraic methods in integrable systems
- Lie algebras and Lie groups; : 1964 lectures given at Harvard University
- Lie groups
- Lie groups and algebras with applications to physics, geometry, and mechanics
- Lie groups and compact groups
- Lie groups and lie algebras : E.B. Dynkin's seminar
- Lie groups and quantum mechanics
- Lie groups and subsemigroups with surjective exponential function
- Lie groups beyond an introduction
- Lie groups for physicists
- Lie groups, Lie algebras, and some of their applications
- Lie groups, Lie algebras, and their representations
- Lie groups, their discrete subgroups, and invariant theory
- Lie semigroups and their applications
- Lie's structural approach to PDE systems
- Linear lie groups
- Linear representations of groups
- Loop groups
- Marches aléatoires sur les groupes de Lie
- Matching of orbital integrals on GL(4) and GSp(2)
- Methods of noncommutative geometry for group C*-algebras
- Moment maps and combinatorial invariants of Hamiltonian Tn̳-spaces
- Nilpotent lie groups : structure and applications to analysis
- Paires duales réductives en caractéristique 2
- Physical aspects of Lie group theory
- Proximal flows
- Real reductive groups
- Representation theory and complex geometry
- Representation theory of Lie groups
- Representation theory of Lie groups : proceedings of the SRC/LMS Research Symposium on Representations of Lie Groups, Oxford, 28 June-15 July 1977
- Representation theory of semisimple groups, an overview based on examples
- Representations of Lie groups and quantum groups
- Representations of finite groups of Lie type
- Representations of nilpotent Lie groups and their applications
- Representations of rank one Lie groups
- SL2(R)
- Similarity methods for differential equations
- Splitting theorems for certain equivariant spectra
- Sub-Laplacians with drift on Lie groups of polynomial volume growth
- Sur le transfert des intégrales orbitales pour les groupes linéaires (cas p-adique)
- Tables of dominant weight multiplicities for representations of simple Lie algebras
- The Dynkin festschrift : Markov processes and their applications
- The Orbit method in representation theory : proceedings of a conference held in Copenhagen, August to September 1988
- The theory of Eisenstein systems
- Unitary representations of reductive Lie groups
- Weil's representation and the spectrum of the metaplectic group
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/jj13SCOJwZU/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/jj13SCOJwZU/">Lie-groepen</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Concept Lie-groepen
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/jj13SCOJwZU/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/jj13SCOJwZU/">Lie-groepen</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>