#
Tensor Analysis
Resource Information
The work ** Tensor Analysis** represents a distinct intellectual or artistic creation found in **Boston University Libraries**. This resource is a combination of several types including: Work, Language Material, Books.

The Resource
Tensor Analysis
Resource Information

The work

**Tensor Analysis**represents a distinct intellectual or artistic creation found in**Boston University Libraries**. This resource is a combination of several types including: Work, Language Material, Books.- Label
- Tensor Analysis

- Statement of responsibility
- by Fridtjov Irgens

- Language
- eng

- Summary
- This book presents tensors and tensor analysis as primary mathematical tools for engineering and engineering science students and researchers. The discussion is based on the concepts of vectors and vector analysis in three-dimensional Euclidean space, and although it takes the subject matter to an advanced level, the book starts with elementary geometrical vector algebra so that it is suitable as a first introduction to tensors and tensor analysis. Each chapter includes a number of problems for readers to solve, and solutions are provided in an Appendix at the end of the text. Chapter 1 introduces the necessary mathematical foundations for the chapters that follow, while Chapter 2 presents the equations of motions for bodies of continuous material. Chapter 3 offers a general definition of tensors and tensor fields in three-dimensional Euclidean space. Chapter 4 discusses a new family of tensors related to the deformation of continuous material. Chapter 5 then addresses constitutive equations for elastic materials and viscous fluids, which are presented as tensor equations relating the tensor concept of stress to the tensors describing deformation, rate of deformation and rotation. Chapter 6 investigates general coordinate systems in three-dimensional Euclidean space and Chapter 7 shows how the tensor equations discussed in chapters 4 and 5 are presented in general coordinates. Chapter 8 describes surface geometry in three-dimensional Euclidean space, Chapter 9 includes the most common integral theorems in two- and three-dimensional Euclidean space applied in continuum mechanics and mathematical physics

- http://bibfra.me/vocab/relation/httpidlocgovvocabularyrelatorsaut
- fWtI23jvc2o

- Image bit depth
- 0

- LC call number
- TA349-359

- Literary form
- non fiction

## Context

Context of Tensor Analysis## Embed (Experimental)

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/lt4QCw2N49Y/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/lt4QCw2N49Y/">Tensor Analysis</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Work Tensor Analysis

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.bu.edu/resource/lt4QCw2N49Y/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.bu.edu/resource/lt4QCw2N49Y/">Tensor Analysis</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.bu.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.bu.edu/">Boston University Libraries</a></span></span></span></span></div>`